

B Turbine Specifications

Are you looking for the maximum return on **your investment** in wind energy?

Wind energy means the world to us. And we want it to mean the world to our customers, too, by maximising your profits and strengthening the certainty of your investment in wind power.

That's why, together with our partners, we always strive to deliver cost-effective wind technologies, high quality products and first class services throughout the entire value chain. And it's why we put so much emphasis on the reliability, consistency and predictability of our technology.

We have more than 35 years' experience in wind energy. During that time, we've delivered more than 70 GW of installed capacity in 75 countries. That is more than 15 per cent of total wind turbine capacity installed globally – and over 15 GW more than our closest competitor. We currently monitor over 28,000 wind turbines across the globe. All tangible proof that Vestas is the right partner to help you realise the full potential of your wind site.

What is the 3 MW Platform today?

The 3 MW platform was introduced in 2010 with the launch of the V112-3.0 MW. Over 8 GW of the 3 MW platform has been installed all over the world onshore and offshore making it the obvious choice for customers looking for highly flexible and trustworthy turbines.

Since then the 3 MW platform was upgraded and new variants were introduced utilising untapped potential of the platform. All variants carry the same nacelle design and the hub design has been re-used to the largest extend possible. In addition, our engineers have increased the nominal power across the entire platform improving your energy production significantly.

With this expansion, the 3 MW platform covers all IEC wind classes with a variety of rotor sizes and a higher rated output power of 3.45 MW.

You can choose from the following turbines on the 3 MW platform:

- V105-3.45 MW™ IEC IA
- V112-3.45 MW™ IEC IA
- · V117-3.45 MW™ IEC IB/IEC IIA
- V126-3.45 MW™ IEC IIB
- V126-3.45 MW™ IEC IIA
- V136-3.45 MW™ IEC IIIA

All variants of the 3 MW platform are based on the proven technology of the V112-3.0 MW® with a full-scale converter, providing you with superior grid performance.

Our 3 MW platform is designed for a broad range of wind and site conditions, enabling you to mix turbines across your site or portfolio of sites, delivering industry-leading reliability, serviceability and exceptional energy capture optimising your business case.

All turbine variants are equipped with the same ergonomically designed and very spacious nacelle which makes it easier for maintenance crews to gain access, so they can reduce the time spent on service while maximizing the uptime without compromising safety. All turbines can be installed and maintained using standard installation and servicing tools and equipment further reducing the operation and maintenance costs by minimising your stock level of spare parts.

How does our technology generate more energy?

More power for every wind site

V112-3.45 MW™, V117-3.45 MW™, V126-3.45 MW™ and V136-3.45 MW™ are available with several noise modes to meet sound level restrictions with an optimised production. The power system enables superior grid support and it is capable of maintaining production across severe drops in grid voltage, while simultaneously minimising tower and foundation loads. It also allows rapid down-rating of production to 10 per cent nominal power.

Proven technologies - from the company that invented them

The 3 MW platform is a low-risk choice. It is based on the proven technologies that underpin more than 56,000 Vestas turbines installed around the world. Using the best features from across the range, as well as some of the industry's most stringently tested components and systems, the platform's reliable design minimises downtime – helping to give you the best possible return on your investment.

With an operating range that covers all wind classes, our 3 MW platform delivers unrivalled energy production. The proven blade technology from the V112-3.0 MW® is used on the V105-3.45 MW™, the V112-3.45 MW™ and on the V117-3.45 MW™. The industry known structural shell blades are used on the V126-3.45 MW™ and V136-3.45 MW™ a technology which is also used on the 2 MW V110-2.0 MW™ variant.

Reliable and robust

The Vestas Test Centre is unrivalled in the wind industry. We test most nacelle components using Highly Accelerated Life Testing (HALT) to ensure reliability. For critical components, HALT identifies potential failure modes and mechanisms. Specialised test rigs ensure strength and robustness for the gearbox, generator, yaw and pitch system, lubrication system and accumulators. Our quality-control system ensures that each component is manufactured to design specifications and performs at site. We systematically monitor measurement trends that are critical to quality, locating defects before they occur.

The 3 MW platform covers all wind segments enabling you to find the best turbine for your specific site.

WINDCLASSES - IEC

TURBINE TYPE	IEC III (6.0 - 7.5 m/s)	IEC II (7.5 - 8.5 m/s)	IEC I (8.5 - 10.0 m/s)
3 MW TURBINES			
V105-3.45 MW™ IEC IA			
V112-3.45 MW™ IEC IA			
V117-3.45 MW™ IEC IB/IEC IIA			
V126-3.45 MW™ IEC IIA			
V126-3.45 MW™ IEC IIB			
V136-3.45 MW™ IEC IIIA			

Standard IEC conditions

· Site dependent

Options available for the 3 MW platform

An option is an extra feature that can be added to the turbine to suit a project's specific needs. By adding options to the standard turbine, we can enhance the performance and adaptability of the wind power project and facilitate a shorter permitting cycle at restricted sites. The options can even be a decisive factor in realising your specific project, and the business case certainty of the investment.

Here is a list of the options available for the 3 MW platform:

- · Power Optimised Mode
- · Condition Monitoring System
- · Service Personnel Lift
- · Vestas Ice Detection
- · Vestas De-Icing
- · Low Temperature Operation to 30°C
- · Fire Suppression
- · Shadow detection
- · Increased Cut-In
- · Nacelle Hatch for Air Inlet
- · Aviation Lights
- · Aviation Markings on the Blades
- Obstacle Collision Avoidance System (OCAS™)

Life testing

The Vestas Test Centre has the unique ability to test complete nacelles using technologies like Highly Accelerated Life Testing (HALT). This rigorous testing of new components ensures the reliability of the 3 MW platform.

Is the 3 MW platform the optimal choice for j`fcdaVIZ Tokko

One common nacelle - five different rotor sizes

The wind conditions on a wind project site are often not identical. The 3 MW platform features a range of turbines that cover all wind classes and combined across your site they can maximise the energy output of your wind power plant.

Tip-height restrictions and strict grid requirements

With a rotor size of 105 m, the V105-3.45 MW™ IEC IA is the turbine that fits the most severe wind conditions. It has an extremely robust design for tough site conditions and is especially suited for markets with tip-height restrictions and high grid requirements.

Like all the other 3 MW turbines, the V105-3.45 $MW^{\mathbb{M}}$ is equipped with a full-scale converter ensuring full compliance with the challenging grid codes in countries like the UK and Ireland.

Cold climates

The V112-3.45 MW $^{\rm m}$, V117-3.45 MW $^{\rm m}$, V126-3.45MW $^{\rm m}$ and V136-3.45 MW $^{\rm m}$ can be combined with Vestas De-Icing and Vestas Ice Detection ensuring optimum production in cold climates.

The Vestas De-Icing System is fully SCADA integrated and can be triggered automatically or manually depending on your de-icing strategy. Automatic control protects your investment, optimising the trigger point so the turbine only stops to de-ice when there is an expected net power production gain.

High- and medium-wind sites

The V112-3.45 MW $^{\rm M}$ IEC IA is a high-wind turbine and has a very high capacity factor. Similar to the other 3 MW turbines, the V112-3.45 MW $^{\rm M}$ IEC IA turbine makes efficient use of its grid compatibility and is an optimal choice for sites with MW constraints.

On medium wind-sites the V117-3.45 MW™ IEC IB/IEC IIA, V126-3.45 MW™ IEC IIA and V126-3.45 MW™ IEC IIB are

excellent turbine choices. A combination of the variants can optimise your site layout and improve your production significantly on complex sites.

Low-wind sites

Built on the same proven technology as the V112-3.0 MW®, the V136-3.45 MW™ IEC IIIA is our best performer on low-wind sites. The larger rotor enable greater wind capture, which in turn produces more energy to reduce levelised cost of energy (LCOE). The result is exceptional profitability in areas with low wind, and new frontiers for wind energy investment.

Large Diameter Steel Towers (LDST) support the added rotor size and rating of Vestas turbines to increase Annual Energy Production on low-wind sites.

LDST is specially designed with a larger diameter in the bottom section that allows for optimal strength at high hub heights.

Maximising old permits

Although the V136-3.45 MW™ is one of the highest producing low wind turbine available, some old permits may simply be too tight to accept it. Although the V117-3.45 MW™ and V126-3.45 MW™ are medium-wind turbines, they still deliver an excellent business case on low-wind sites.

Due to the similar electrical properties and nacelle design, it is easy to mix and match the turbines from the 3 MW platform to maximise production on heavily constrained sites.

Would you **SV_V** e from uninterrupted control of wind energy production?

Knowledge about wind project planning is key

Getting your wind energy project up and operating as quickly as possible is fundamental to its long-term success. One of the first and most important steps is to identify the most suitable location for your wind power plant. Vestas' SiteHunt® is an advanced analytical tool that examines a broad spectrum of wind and weather data to evaluate potential sites and establish which of them can provide optimum conditions for your project.

In addition, SiteDesign® optimises the layout of your wind power plant. SiteDesign® runs Computational Fluid Dynamics (CFD) software on our powerful in-house supercomputer Firestorm to perform simulations of the conditions on site and analyse their effects over the whole operating life of the plant. Put simply, it finds the optimal balance between the estimated ratio of annual revenue to operating costs over the lifetime of your plant, to determine your project's true potential and provide a firm basis for your investment decision.

The complexity and specific requirements of grid connections vary considerably across the globe, making the optimal design of electrical components for your wind power plant essential. By identifying grid codes early in the project phase and simulating extreme operating conditions, Electrical PreDesign provides you with an ideal way to build a grid compliant, productive and highly profitable wind power plant. It allows customised collector network cabling, substation protection and reactive power compensation, which boost the cost efficiency of your business.

Advanced monitoring and real-time plant control

All our wind turbines can benefit from VestasOnline® Business, the latest Supervisory Control and Data Acquisition (SCADA) system for modern wind power plants.

This flexible system includes an extensive range of monitoring and management functions to control your wind power plant. VestasOnline®Business enables you to optimise production levels,

+28,000

The Vestas Performance and Diagnostics Centre monitors more than 28,000 turbines worldwide. We use this information to continually develop and improve our products and services.

monitor performance and produce detailed, tailored reports from anywhere in the world. The VestasOnline® Power Plant Controller offers scalability and fast, reliable real-time control and features customisable configuration, allowing you to implement any control concept needed to meet local grid requirements.

Surveillance, maintenance and service

Operating a large wind power plant calls for efficient management strategies to ensure uninterrupted power production and to control operational expenses. We offer 24/7 monitoring, performance reporting and predictive maintenance systems to improve turbine performance and availability. Predicting faults in advance is essential, helping to avoid costly emergency repairs and unscheduled interruptions to energy production.

Our Condition Monitoring System (CMS) assesses the status of the turbines by analysing vibration signals. For example, by measuring the vibration of the drive train, it can detect faults at

an early stage and monitor any damage. This information allows pre-emptive maintenance to be carried out before the component fails, reducing repair costs and production loss.

Additionally, our Active Output Management® (AOM) concept provides detailed plans and long term agreements for service and maintenance, online monitoring, optimisation and trouble-shooting. It is possible to get a full scope contract, combining your turbines' state-of-the-art technology with guaranteed time or energy-based availability performance targets, thereby creating a solid base for your power plant investment. The Active Output Management® agreement provides you with long term and financial operational peace of mind for your business case.

V105-3.45 MW™ IEC IA

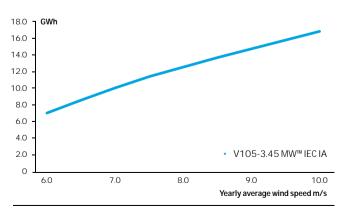
7RTed; } XfdVd

POWER REGULATION	Pitch regulated with variable speed
OPERATING DATA	
Rated power	3,450 kW
Cut-in wind speed	3 m/s
Cut-out wind speed	25 m/s
Re cut-in wind speed	23 m/s
Wind class	IEC IA
Standard operating temperature range fro with de-rating above 30°C	m -20°C° to +45°C
*subject to different temperature options	

SOUND POWER

(Noise modes dependent on site and country)

ROTOR	
Rotor diameter Swept area	105 m 8,659 m²
Air brake	full blade feathering with 3 pitch cylinders
ELECTRICAL Frequency Converter	50/60 Hz full scale


ELECTRICAL	
Frequency	50/60 Hz
Converter	full scale
GEARBOX	
Туре	two planetary stages and
	one helical stage
TOWER	
Hub height	72.5 m (IEC IA)
NACELLE DIMENSIONS	
Height for transport	3.4 m
Height installed	
(incl. CoolerTop®)	6.9 m
Length	12.8 m
Width	4.2 m

HUB DIMENSIONS	
Max. transport height	3.8 m
Max. transport width	3.8 m
Max. transport length	5.5 m
BLADE DIMENSIONS	
Length	51.2 m
Max. chord	4 m
Max. weight per unit for transportation	70 metric tonnes

TURBINE OPTIONS

- · Power Optimised Mode
- · Condition Monitoring System
- · Service Personnel Lift
- · Vestas Ice Detection
- · Low Temperature Operation to -30°C
- · Fire Suppression
- · Shadow Detection
- · Increased Cut-In
- · Nacelle Hatch for Air Inlet
- · Aviation Lights
- · Aviation Markings on the Blades
- Obstacle Collision Avoidance System (OCAS™)

ANNUAL ENERGY PRODUCTION

Assumptions
One wind turbine, 100% availability, 0% losses, k factor = 2,

Standard air density = 1.225, wind speed at hub height

V112-3.45 MW™ **IECIA**

7RTed; } XfdVd

POWER REGULATION	Pitch regulated with variable speed
OPERATING DATA	
Rated power	3,450 kW
Cut-in wind speed	3 m/s
Cut-out wind speed	25 m/s
Re cut-in wind speed	23 m/s
Wind class	IEC IA
Standard operating temperature range fro with de-rating above 30°C	m -20°C° to +45°C
*subject to different temperature options	

SOUND POWER

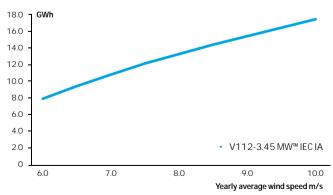
TOWER

(Noise modes dependent on site and country)

ROTOR	
Rotor diameter	112 m
Swept area	9,852 m ²
Air brake	full blade feathering with
	3 pitch cylinders
ELECTRICAL	
Frequency	50/60 Hz
Converter	full scale
GEARBOX	
Type	two planetary stages and

Hub height	69 m (IEC IA) and 94 m (IEC IA)
NACELLE DIMENSIONS	
Height for transport	3.4 m
Height installed	
(incl. CoolerTop®)	6.9 m
Length	12.8 m
Width	4.2 m

HUB DIMENSIONS	
Max. transport height	3.8 m
Max. transport width	3.8 m
Max. transport length	5.5 m
BLADE DIMENSIONS	
Length	54.7 m
Max. chord	4 m
Max. weight per unit for transportation	70 metric tonnes


TURBINE OPTIONS

- · Power Optimised Mode
- · Condition Monitoring System
- · Service Personnel Lift
- · Vestas Ice Detection
- · Vestas De-Icing
- · Low Temperature Operation to 30°C
- · Fire Suppression
- · Shadow detection
- · Increased Cut-In
- · Nacelle Hatch for Air Inlet
- · Aviation Lights

one helical stage

- · Aviation Markings on the Blades
- Obstacle Collision Avoidance System (OCAS™)

ANNUAL ENERGY PRODUCTION

Assumptions
One wind turbine, 100% availability, 0% losses, k factor = 2, Standard air density = 1.225, wind speed at hub height

V117-3.45 MW™ IEC IB/IEC IIA 7RTed, } Xf c\/d

POWER REGULATION	Pitch regulated with
	variable speed

OPERATING DATA

Rated power 3,450 kW
Cut-in wind speed 3 m/s
Cut-out wind speed 25 m/s
Re cut-in wind speed 23 m/s
Wind class IEC IB/IEC IIA
Standard operating temperature range from -20°C to +45°C
with de-rating above 30°C

*subject to different temperature options

SOUND POWER

(Noise modes dependent on site and country)

ROTOR

Rotor diameter 117 m Swept area 10,751 m² Air brake full blade feathering with 3 pitch cylinders

ELECTRICAL

Frequency 50/60 Hz Converter full scale

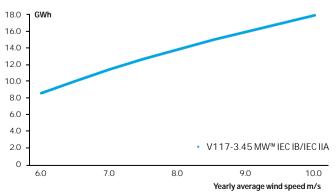
GEARBOX

Type two planetary stages and one helical stage

TOWER

Hub heights 80 m (IEC IB), 91.5 m (IEC IB) and 116.5 m (IEC IB/IEC IIA/DIBtS)

NACELLE DIMENSIONS


Height for transport	3.4 m
Height installed	
(incl. CoolerTop®)	6.9 m
Length	12.8 m
Width	4.2 m

HUB DIMENSIONS	
Max. transport height	3.8 m
Max. transport width	3.8 m
Max. transport length	5.5 m
BLADE DIMENSIONS	
Length	57.2 m
Max. chord	4 m
Max. weight per unit for transportation	70 metric tonnes

TURBINE OPTIONS

- · Power Optimised Mode
- · Condition Monitoring System
- · Service Personnel Lift
- · Vestas Ice Detection
- · Vestas De-Icing
- · Low Temperature Operation to 30°C
- · Fire Suppression
- · Shadow detection
- · Increased Cut-In
- · Nacelle Hatch for Air Inlet
- · Aviation Lights
- · Aviation Markings on the Blades
- Obstacle Collision Avoidance System (OCAS™)

ANNUAL ENERGY PRODUCTION

Assumptions

One wind turbine, 100% availability, 0% losses, k factor =2, Standard air density = 1.225, wind speed at hub height

V126-3.45 MW™ **IEC IIB** 7RTed, } Xf d/d

POWER REGULATION	Pitch regulated with
	variable speed

OPERATING DATA

Rated power 3,450 kW Cut-in wind speed 3 m/s Cut-out wind speed 22.5 m/s Re cut-in wind speed 20 m/s Wind class **IEC IIB**

Standard operating temperature range from -20°C° to +45°C with de-rating above 30°C

*subject to different temperature options

SOUND POWER

(Noise modes dependent on site and country)

ROTOR

Rotor diameter 126 m Swept area 12,469 m² full blade feathering with Air brake 3 pitch cylinders

ELECTRICAL

50/60 Hz Frequency Converter full scale

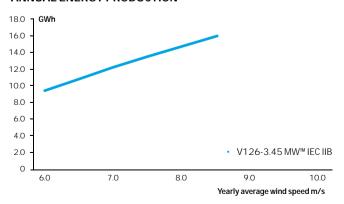
GEARBOX

two planetary stages and Type one helical stage

TOWER

Hub heights 87 m (IEC IIB), 117 m (IEC IIB) and 137 m (IEC IIIA)

NACELLE DIMENSIONS


Height for transport	3.4 m
Height installed	
(incl. CoolerTop®)	6.9 m
Length	12.8 m
Width	4.2 m

HUB DIMENSIONS	3.8 m 3.8 m 5.5 m		
Max. transport height Max. transport width Max. transport length			
		BLADE DIMENSIONS	
		Length	61.7 m
Max. chord	4 m		
Max. weight per unit for	70 metric tonnes		
transportation			

TURBINE OPTIONS

- · Power Optimised Mode
- · Condition Monitoring System
- · Service Personnel Lift
- · Vestas Ice Detection
- · Vestas De-Icing
- · Low Temperature Operation to 30°C
- · Fire Suppression
- · Shadow detection
- · Increased Cut-In
- · Nacelle Hatch for Air Inlet
- · Aviation Lights
- · Aviation Markings on the Blades
- Obstacle Collision Avoidance System (OCAS™)

ANNUAL ENERGY PRODUCTION

Assumptions
One wind turbine, 100% availability, 0% losses, k factor =2, Standard air density = 1.225, wind speed at hub height

V126-3.45 MW™ IEC IIA 7RTed, } Xf d\d

POWER REGULATION	Pitch regulated with
	variable speed
ODED ATIMIC DATA	

OPERATING DATA

Rated power 3,450 kW
Cut-in wind speed 3 m/s
Cut-out wind speed 22.5 m/s
Re cut-in wind speed 20 m/s
Wind class IEC IIA

Standard operating temperature range from -20°C $^{\circ}$ to +45°C with de-rating above 30°C

*subject to different temperature options

SOUND POWER

(Noise modes dependent on site and country)

ROTOR

Rotor diameter 126 m Swept area 12,469 m² Air brake full blade feathering with 3 pitch cylinders

ELECTRICAL

Frequency 50/60 Hz
Converter full scale

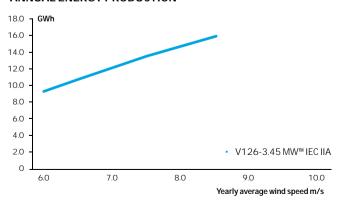
GEARBOX

Type two planetary stages and one helical stage

TOWER

Hub heights 87 m (IEC IIA), 117 m (IEC IIA/DIBtS), 137 m (IEC IIIA/DIBtS), 147 m (IEC IIIA), 149 m (DIBtS) and 166 m (DIBtS)

NACELLE DIMENSIONS


Height for transport	3.4 m
Height installed	
(incl. CoolerTop®)	6.9 m
Length	12.8 m
Width	4.2 m

3.8 m
3.8 m
5.5 m
61.7 m
4 m
70 metric tonnes

TURBINE OPTIONS

- · Power Optimised Mode
- · Condition Monitoring System
- · Service Personnel Lift
- · Vestas Ice Detection
- · Vestas De-Icing
- · Low Temperature Operation to 30°C
- · Fire Suppression
- · Shadow detection
- · Increased Cut-In
- · Nacelle Hatch for Air Inlet
- · Aviation Lights
- · Aviation Markings on the Blades
- Obstacle Collision Avoidance System (OCAS™)

ANNUAL ENERGY PRODUCTION

Assumptions

One wind turbine, 100% availability, 0% losses, k factor =2, Standard air density = 1.225, wind speed at hub height

V136-3.45 MW™ IEC IIIA 7RTed, } Xf c\d

POWER REGULATION	Pitch regulated with
	variable speed

OPERATING DATA

Rated power 3,450 kW
Cut-in wind speed 3 m/s
Cut-out wind speed 22.5 m/s
Re cut-in wind speed 20 m/s
Wind class IEC IIIA

Standard operating temperature range from -20°C $\dot{}$ to +45°C with de-rating above 30°C

*subject to different temperature options

SOUND POWER

(Noise modes dependent on site and country)

ROTOR

Rotor diameter 136 m Swept area 14,527 m² Air brake full blade feathering with 3 pitch cylinders

ELECTRICAL

Frequency 50/60 Hz
Converter full scale

GEARBOX

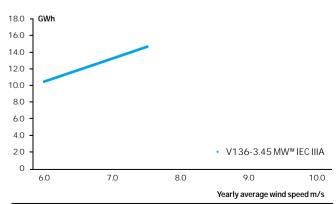
Type two planetary stages and one helical stage

TOWER

Hub heights 82 m (IEC IIIA), 112 m (IEC IIIA), 132 m (IEC IIIA/DIBt2) and 149 m (DIBtS)

NACELLE DIMENSIONS

Height for transport	3.4 m
Height installed	
(incl. CoolerTop®)	6.9 m
Length	12.8 m
Width	4.2 m


HUB DIMENSIONS	
Max. transport height Max. transport width	3.8 m
	3.8 m
Max. transport length	5.5 m
BLADE DIMENSIONS	
Length	66.7 m
Max. chord	4.1 m

Max. weight per unit for 70 metric tonnes transportation

TURBINE OPTIONS

- · Condition Monitoring System
- · Service Personnel Lift
- · Vestas Ice Detection
- · Vestas De-Icing
- · Low Temperature Operation to 30°C
- $\cdot \ \, \mathsf{Fire}\,\mathsf{Suppression}$
- · Shadow detection
- · Increased Cut-In
- · Nacelle Hatch for Air Inlet
- · Aviation Lights
- · Aviation Markings on the Blades
- · Obstacle Collision Avoidance System (OCAS™)

ANNUAL ENERGY PRODUCTION

Assumptions
One wind turbine, 100% availability, 0% losses, k factor =2,
Standard air density = 1.225, wind speed at hub height

Vestas Wind Systems A/S $He deager\,42\,\,.\,\,8200\,Aarhus\,N\,\,.\,\,Denmark$ Tel: +45 9730 0000 . Fax: +45 9730 0001 vestas@vestas.com . vestas.com

B-2 Vestas Model V126-3.45MW Type Certificate

DNV-GL

TYPE CERTIFICATE

Certificate No.:

TC-DNV-DSS-904-00337-0 (TC-230906-A-3)

Issued: 2015-09-17 Valid until: 2019-10-30

Issued for:

Vestas V126-3.3 MW / V126-3.45 MW

Specified in Annex 1

Issued to:

Vestas Wind Systems A/S

8200 Aarhus N Denmark

According to:

IEC 61400-22:2010 Wind turbines - Part 22: Conformity Testing and Certification, BEK 73: 2013 "Bekendtgørelse om teknisk certificeringsordning for vindmøller" and DNV-DSS-904:2014-01 Type Certification of Wind Turbines

Based on the documents:

DB-DNV-DSS-904-00772-0

(DB-230906-A-3)

DE-DNV-DSS-904-00774-0

(DE-230906-A-4)

TT-DNV-DSS-904-00775-0

(TT-230906-A-3)

ME-DNV-DSS-904-00776-0

(MC-230906-A-3)

TCM-DNV-DSS-904-00777-0

(TM-230906-A-3)

FER-TC-DNV-DSS-904-00337-0

(PD-2309-18CGY6P-36, Rev 4)

Design Basis Conformity Statement,

dated 2015-09-17

Design Evaluation Conformity Statement,

dated 2015-09-17

Type Test Conformity Statement,

dated 2015-09-17

Manufacturing Evaluation Conformity Statement,

dated 2015-09-17

Type Characteristics Measurements Conformity Statement,

dated 2015-09-17

Final Evaluation Report, dated 2015-09-17

Changes of the system design, the production and erection or the manufacturer's quality system are to be approved by DNV GL.

Hellerup, 2015-09-17

For the accredited certification body Germanischer Lloyd Industrial Services GmbH

Christer Eriksson

Service Line Leader Type Certification

By DAkkS according DIN EN IEC/ISO 17065 accredited Certification Body for products. The accreditation is valid for the fields of certification listed in the certificate.

Hellerup, 2015-09-17

For the accredited certification body Germanischer Lloyd Industrial Services GmbH

Niels Dam Lerke Project Manager

The latest edition of the "General Terms & Conditions of Germanischer Lloyd Industrial Services GmbH" is applicable German law applies. Germanischer Lloyd Industrial Services GmbH, Brooktorkai 18, 20457 Hamburg, Germany

Certificate No.: TC-DNV-DSS-904-00337-0 (TC-230906-A-3)

Page 2 of 5

Wind turbine type certification

Basic standard IEC WT class

General

Power regulation Rotor orientation Rotor tilt Cone angle Rated power Rated wind speed v_r Rotor diameter Hub height(s)

Hub height operating wind speed range v_{in} - v_{out}

Design life time Software version

Wind conditions

Mean turbulence intensity I_{ref} at $v_{hub} = 15$ m/s Annual average wind speed at hub height vave Reference wind speed v_{ref} Mean flow inclination

Electrical network conditions

Normal supply voltage and range

Normal supply frequency and range Voltage imbalance Maximum duration of electrical power network outages Number of electrical network outages

Other environmental conditions

Air density

Standard temperature range

Low temperature range

Relative humidity of the air

Solar radiation Salinity

IEC 61400-1 ed. 3 + A1 IEC IIIA and IEC IIIB (except for temperature ranges) -V126-3.3 MW IEC S - V126-3.45 MW

pitch-controlled upwind 60 4٥ 3300 kW / 3450 kW 10.70 m/s 126m 117m (T3E160 - IEC IIIB/S) 137m (LDST - IEC IIIA/S) 87m (T3E155 - IEC IIIA/S) 3 -22.5 m/s (117m and 137m) 3 -20 m/s (87m) 20 years 13.08.56

IEC IIIA IEC IIIB IEC S 0.16 0.14 0.16/0.147.5 m/s 7.5 m/s6.9 m/s 37.5 m/s 37.5 m/s 37.5 m/s 80 g٥

3 x 650 V $10.5-35 \text{ kV} \pm 10 \%$ 50 or 60 Hz ± 6 % IEC 61000-3-6 TR max 2 % Two 3 months periods Max 52 per year

1.225 / 1.325 kg/m³ To account for low temperature operation, Vestas has applied higher air density for the following load cases: 1.2, 2.1, 3.1, 4.1 and 5.1

Normal: -20 °C to +45 °C* -40 °C to +50 °C Extreme: -30 °C to +45 °C* Normal: -40 °C to +50 °C Extreme: (*de-rating strategy above +30

ºC for V126-3.3MW

*de-rating strategy above +25 ^oC for V126-3.45MW) 100% (max 40% of time) and 90% (rest of life time)

1000 W/m²

ISO 9223: Airborne salinity S3

Certificate No.: TC-DNV-DSS-904-00337-0 (TC-230906-A-3)

Page 3 of 5

Description of lightning protection system

Designed acc. to IEC 61400-24, Protection Level 1 and IEC

61312-1

Major components

Blade Type

> Manufacturer Material

Blade length Air brake

Number of blades

Drawing / Data sheet / Part no.

Hub Type

Material Drawing / Data sheet / Part no.

Blade bearing Type

Manufacturer

Drawing / Data sheet / Part no.

Pitch System

Hydraulic/Electrical unit

Actuators

Main shaft Type

Material

Drawing / Data sheet / Part no.

Main bearing Type

Manufacturer

Drawing / Data sheet / Part no.

Manufacturer

Drawing / Data sheet / Part no.

Gearbox Type

> Manufacturer Gear Ratio

Drawing / Data sheet / Part no.

Type

Manufacturer Gear Ratio

Drawing / Data sheet / Part no.

Couplings Main shaft-Main gear

Manufacturer

Type

Infused structural air foil shell

Carbon fibres pultrusions, glass fibre fabrics, balsa and PET

foam core 61.65 m

Full span blade feather

Drawing No: 0028-7875 Drawing No: 0046-1000 -

V126 STE kit

Cast ball shell hub EN GJS-400-18U-LT

085210

Double row four-point contact

ball bearing Laulagun

F2840M00DST0125VW

Hydraulic power unit PMC Technology A/S LJM, Glual or Parker

Cast hollow shaft EN GJS-400-18U-LT 085196 / 29024367

Double-row spherical roller

bearing

SKF

240/950 CA/C3LW 33VQ113

FAG Schaeffler

240/950 F-582562.PRL.WPOS

2 Planetary stages and one

helical stage Winergy 112.6 PZAB3530.1

2 Planetary stages and one

helical stage

ZF 112.8 EH921A

Shrink disc

Tollok

TLK622 990x1350

Certificate No.: TC-DNV-DSS-904-00337-0 (TC-230906-A-3)

Page 4 of 5

Main gear-Generator

Manufacturer

Type

Machine foundation Type

Material

Drawing / Data sheet / Part no.

EN GJS-400-18U-LT

29006988

Yaw system

Drive type

Nacelle mounted electrical driven plain bearing with

Flexible composite coupling

KTR Kupplungstechnik GmbH

RADEX-N 2200kpl.m.Lamellenp

external toothing

Friction bearing, permanently

pre-tensioned

Liebherr type DAT350/1492-

4000

Comer type PG 1603 Bonfiglioli type 709T4U Electrical disc brake in yaw

motors 0.46 °/s

Yaw brake type

Yaw bearing type

Yaw drive type

Yaw speed

Manufacturer

Eurotubi / Vestas

Disc brake

Type High speed shaft of gearbox Location Min. 17.4 kNm (static) Brake torque

Generator

Mechanical brakes

Manufacturer

Rated power

Voltage

Type

Siemens (not valid for V126-3.45MW)

Three phase induction generator with squirrel cage rotor - JGWA-560LM-06A

3500kW 750 V 1450 rpm

IP54

Manufacturer

Rated voltage

Rated power

Rated speed

Cos phi

Rated current

Nominal Speed

Insulation class

Type

Siemens

Three phase induction generator with squirrel cage rotor - JGWA-560LM-06A

750 V 3650 kW 3440 A 0.82 1450 rpm IP54 Protection class (acc. to IEC 529) 72.2 Hz

F

Rated frequency Insulation class

Protection class (acc. to IEC 529)

VND

Three phase induction Type

generator with squirrel cage

rotor - DASG 560/6M

3650 kW 750 V 1450 rpm IP54

Manufacturer

Nominal power Voltage

Nominal Speed Insulation class

Protection class (acc. to IEC 529)

Certificate No.: TC-DNV-DSS-904-00337-0 (TC-230906-A-3)

Page 5 of 5

Manufacturer

Type

Rated power Rated voltage Rated frequency

Rated power factor (VFD) - Cos phi

Insulation class stator

Protection class (acc. to IEC 529)

Rated speed

Rated stator current

Transformer Manufacturer

Type

Nominal power Environmental Tests Climatic Tests

Protection system Description

Tower Type

Hub height

Drawing / Data sheet / Part no.

Type

Hub height

Drawing / Data sheet / Part no.

Type

Hub height

Drawing / Data sheet / Part no.

Control System Manufacturer

Lift

Type

Manufacturer

Type

Crane Manufacturer

Type

Manuals O&M manual

Transport manual

Installation / Commissioning manual

VND SFIG_V2

Three phase induction

generator with squirrel cage

rotor - DASG 560/6M

3650 kW 750 V 72.5 Hz 0.87 H IP54

1450 rpm 3230 A

SGB / Siemens Dry-type transformer

3750 kVA

E2 according to IEC 60076-11 C2 according to IEC 60076-11

Configurable safety system

based on safety relays

Tubular steel tower

117m

0038-9831.V01

Tubular steel tower

87m

0050-2668.V00

Large diameter steel tower

137m

0041-4092.V04

Vestas

Vestas Multi Processor VMP

Global

Avanti

Avanti Dolphin service lift

Star 071/95 Liftket

max 800 kg

See list of manuals 0006-6955, Rev. 24

See list of manuals

0040-6996, Rev. 8

-----,

See list of manuals 0040-6996, Rev. 8

B-3 Vestas Model V126-3.45MW Typical Vertical Drawing

Figure 10: Vertical Drawing of Vestas V126 Wind Energy Turbine
Inset photograph of V126 Access Door

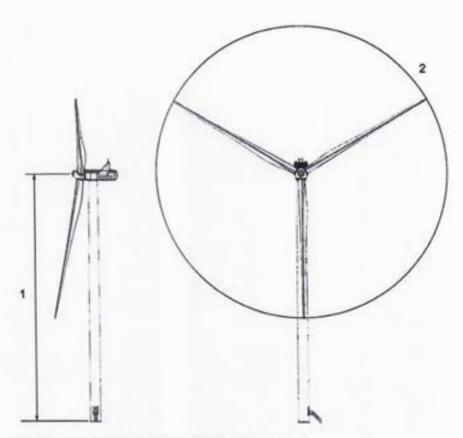


Figure 4-1: Illustration of outer dimensions - structure

1 Hub height 87/117/137 m

2 Diameter: 126 m

