SOUND LEVEL ASSESSMENT REPORT

Ball Hill Wind Project Towns of Villenova & Hanover Chautauqua County, NY

Prepared for:

Renewable Energy Systems Americas Inc. 11101 West 120th Avenue, Suite 400 Broomfield, CO 80021

Prepared by:

Epsilon Associates, Inc. 3 Clock Tower Place, Suite 250 Maynard, MA 01754

December 22, 2015

TABLE OF CONTENTS

1.0	EXEC	UTIVE S	1-1	
2.0	PROJI	ECT OVE	RVIEW	2-1
3.0	SOUN		RICS	3-1
4.0	NOIS	E REGUL		4-1
	4.1	Now V	a Regulations	4-1
	4.2			4-1
	4.3 4.4	NYSDE	EC Guidelines	4-1 4-2
5.0	EXIST	ing sou	UND LEVELS	5-1
6.0	FUTU	RE CON	IDITIONS	6-1
	6.1	Equipn	nent and Operating Conditions	6-1
		6.1.1	GE 2.3-116	6-1
		6.1.2	Vestas V110-2.2	6-2
		6.1.3	Substation	6-3
	6.2	Modeli	ing Methodology	6-4
	6.3	Modeli	ing Sound Level Results	6-5
		6.3.1	GE 2.3-116	6-5
		6.3.2	Vestas V110-2.2	6-7
7.0	EVAL	UATION	OF SOUND LEVELS	7-1
	7.1	GE 2.3	3-116	7-1
		7.1.1	Local Regulations	7-1
		7.1.2	NYSDEC Criteria	7-3
		7.1.3	Low Frequency Sound	7-4
	7.2	Vestas	s V110-2.2	7-5
		7.2.1	Local Regulations	7-5
		7.2.2	NYSDEC Criteria	7-7
		7.2.3	Low Frequency Sound	7-7
	7.3	Constr	ruction Noise	7-8
8.0	CON	CLUSION	NS	8-1

LIST OF APPENDICES

Appendix B Vestas V110-2.2 Sound Level Modeling Results

LIST OF FIGURES

Figure 3-1	Common Sound Levels in the Environment	3-3
Figure 6-1	Predicted Maximum Project-Only L10 Sound Levels – GE 2.3-116	6-6
Figure 6-2	Predicted Maximum Project-Only L10 Sound Levels – Vestas V110-2.2	6-8

LIST OF TABLES

Table 4-1	Thresholds for Sound Pressure Level Increases	4-2
Table 6-1	GE 2.3-116 Broadband Sound Power Level (dBA) as a Function of Wind Speed	6-1
Table 6-2	GE 2.3-116 Octave-Band Sound Power Levels (dB)	6-1
Table 6-3	Comparison of Background and GE 2.3-116 Turbine Sound Level to Determine "Critical-Case" Design Wind Speed (at Maximum Differential)	6-2
Table 6-4	Vestas V110-2.2 Broadband Sound Power Level (dBA) as a Function of Wind Speed	6-2
Table 6-5	Vestas V110-2.2 Octave-Band Sound Power Levels (dB)	6-2
Table 6-6	Comparison of Background and Vestas V110-2.2 Turbine Sound Level to Determine "Critical-Case" Design Wind Speed (at Maximum Differential)	6-3
Table 6-7	Substation Transformer Sound Power Levels ¹ (dB)	6-3
Table 7-1	Tonal Analysis & Compliance Evaluation: GE 2.3-116 Sound Power Level Emissions	7-1
Table 7-2	Tonal Analysis: GE 2.3-116 Received Sound Pressure Levels	7-2
Table 7-3	Predicted Worst-Case Low Frequency Sound Levels	7-4
Table 7-4	Tonal Analysis: Vestas V110-2.2 Sound Power Level Emissions	7-5
Table 7-5	Tonal Analysis: Vestas V110-2.2 Received Sound Pressure Levels	7-6
Table 7-6	Predicted Worst-Case Low Frequency Sound Levels	7-8

1.0 EXECUTIVE SUMMARY

Epsilon Associates, Inc. (Epsilon) has conducted a sound level assessment for Renewable Energy Systems Americas, Inc. (RES) of the Ball Hill Wind Project, a proposed wind power generation facility in Chautauqua County, New York. RES is considering up to 36 wind turbine generators comprised of either GE 2.3-116 or Vestas V110-2.2 models with a hub height of 94 to 95 meters and a rotor diameter of 110 to 116 meters. The study references a previously completed sound-monitoring program conducted to determine existing sound levels in the vicinity of the Project, includes computer modeling to predict future sound levels when the wind turbines and associated electrical substation are operational, and compares the operational sound levels to applicable state and local criteria.

Sound impacts associated with all 36 proposed wind turbine generators and proposed electrical substation were modeled at 335 receptors representing the closest structures to the Project using Cadna/A noise calculation software. Maximum operational sound levels at all of the modeled receptors are predicted to be equal to or less than 50 dBA, in compliance with local noise limits specified by the Towns of Hanover and Villenova. Additionally, the Project is anticipated to meet the suggested noise guidelines recommended by the New York State Department of Environmental Conservation (NYSDEC) to avoid the potential for adverse noise impacts in the community.

An evaluation was also performed to assess tonality and low frequency sound with respect to Project operation. No pure tones were identified in the sound power level spectra for either the GE 2.3-116 or Vestas V110-2.2 unit, nor in the calculated received sound pressure levels at the closest structures to the Project. Low frequency sound levels at all receptors are also well below the recommended criteria to avoid disturbance indoors as well as any potential vibration and rattle.

2.0 PROJECT OVERVIEW

Renewable Energy Systems Americas, Inc. (RES) is proposing to install thirty six (36) GE 2.3-116 or Vestas V110-2.2 wind turbines at the proposed Ball Hill Wind Project site (the Project) located in the Towns of Hanover and Villenova in Chautauqua County, NY. Hessler Associates, Inc. (Hessler) completed a background sound level monitoring program in March 2008 to determine existing sound levels in the vicinity of the Project. Epsilon Associates, Inc. (Epsilon) has conducted computer modeling to predict future sound levels when the proposed wind turbines and associated electrical substation would be operational. The results of this analysis and an evaluation of compliance with applicable criteria are presented herein.

3.0 SOUND METRICS

There are several ways in which sound levels are measured and quantified, all of which use the logarithmic decibel (dB) scale to accommodate the wide range of sound intensities found in the environment. An interesting property of the logarithmic scale is that the sound pressure levels of two distinct sounds are not directly additive. For example, if a sound of 50 dB is added to another sound of 50 dB, the total sound level is only a three-decibel increase (to 53 dB), not a doubling to 100 dB. Thus, every three dB change in sound level represents a doubling or halving of sound energy. A change in sound level of less than three dB is generally considered just perceptible to the human ear¹.

Another property of the decibel scale is that if one source of sound is 10 dB (or more) louder than another source, then the quieter source does not contribute significantly to the overall sound level which remains the same as that of the louder source. For example, the combined sound level of a source of sound at 60 dB plus another source of sound at 47 dB is simply 60 dB.

The sound level meter used to measure noise is a standardized instrument.² It contains "weighting networks" to adjust the frequency response of the instrument to approximate that of the human ear under various conditions. One network is the A-weighting network (there are also B- and C-weighting networks). The A-weighted scale (dBA) most closely approximates how the human ear responds to sound at various frequencies, and is typically used for community sound level measurements³. Sounds are frequently reported as detected with the A-weighting network of the sound level meter. A-weighted sound levels emphasize the middle frequency (*i.e.,* middle pitched – around 1,000 Hertz (Hz) sounds), and de-emphasize lower and higher frequency sounds. A-weighted sound levels are reported in decibels designated as "dBA." For reference, sound pressure levels for some common indoor and outdoor environments are shown in Figure 3-1.

Two methods exist for describing sounds in our environment that vary with time: these are exceedance levels and the equivalent level, both of which are derived from a large number of moment-to-moment A-weighted sound level measurements. Several sound level metrics that are commonly reported in community sound monitoring programs are described below.

¹ Bies, David A., and Hansen, Colin H. *Engineering Noise Control: Theory and Practice*. 4th ed. New York: Spon Press, 2009. 85. Print

² American National Standards Institute. "*ANSI S1.4-1983: Specification for Sound Level Meters.*" Acoustical Society of America.

³ Bies, David A., and Hansen, Colin H. *Engineering Noise Control: Theory and Practice*. 4th ed. New York: Spon Press, 2009. 103. Print

- Exceedance levels, designated L_n, where n can have a value of 0 to 100 percent, are values from the cumulative amplitude distribution of all of the sound levels observed during a measurement period. L₉₀ is the sound level in dBA exceeded 90 percent of the time during the measurement period and is close to the lowest sound level observed. It is essentially the residual sound level when there are no obvious nearby intermittent noise sources.
- Leq, the equivalent level, is the level of a hypothetical steady sound that would have the same energy (*i.e.*, the same time-averaged mean square sound pressure) as the actual fluctuating sound observed. The equivalent level is designated Leq and is also A-weighted. The equivalent level represents the time average of the fluctuating sound pressure, but because sound is represented on a logarithmic scale and the averaging is done with linear mean square sound pressure values, the Leq is mostly determined by occasional loud noises, such as a passing vehicle or an aircraft flyover.

In short, by using various sound metrics it is possible to separate prevailing, steady sounds (the L_{90}) from occasional, louder sounds (L_{10}) in the acoustic environment or combined equivalent levels (L_{eq}).

4.0 NOISE REGULATIONS

Noise is officially defined as "unwanted sound". The principal feature of this definition is that there must be sound energy and that there must be someone hearing it who considers it unwanted. Noise impact is judged on two bases: the extent to which governmental regulations or guidelines may be exceeded, and the extent to which it is estimated that people may be annoyed or otherwise adversely affected by the sound. Regulatory authority for assessing and controlling noise is contained in both the State Environmental Quality Review Act (SEQRA) and specific Department program policy documents. Specific regulatory references are discussed below.

4.1 Federal Regulations

There are no federal community noise regulations applicable to wind farms.

4.2 New York State Regulations

Noise is an aspect of the environment under SEQRA (see 6 NYCRR 617.2(1)), and a substantial adverse change in existing noise levels can be (if not mitigated to the maximum extent practicable) among the indicators of significant adverse impacts on the environment.

4.3 Local Regulations

Article XVI, Section 1606 (Zoning District and Bulk Requirements), Parts 3 through 6 of the Town of Hanover Wind Law contains a noise limit applicable to Wind Energy Conversion Systems (WECS) which requires that:

"The statistical sound pressure level generated by a WECS shall not exceed $L_{10} - 50$ dBA measured at any off site residence existing at the time of application. If the ambient sound level exceeds 48 dBA, the standard shall be ambient dBA plus 5 dBA. Independent certification shall be provided before and after construction demonstrating compliance with this requirement.

In the event audible noise due to WECS operation contains a steady pure tone, such as a whine, screech or hum, the standards for audible noise set forth in this subsection shall be reduced by five dBA. A pure tone is defined to exist if the 1/3 octave band sound pressure level in the band, including the tone, exceeds the arithmetic average of the sound pressure levels of the two contiguous bands by:

- 5 dB for center frequencies of 500 Hz or above
- 8 dB for center frequencies between 160 and 500 Hz
- 15 dB for center frequencies less than or equal to 125 Hz

In the event the ambient noise level (exclusive of the development in question) exceeds the applicable standard given above, the applicable standard shall be adjusted so as to equal the ambient noise level."

Section 690.12 (Setbacks for Wind Energy Conversion Systems), Parts A through D of Local Law No. 1 of 2007 for the Town of Villenova contains an identical noise limit to the Town of Hanover, as described above.

4.4 NYSDEC Guidelines

The NYSDEC has published a guidance document⁴ for assessing noise impacts (NYSDEC, 2001). The guidance document states that the addition of any noise source, in a non-industrial setting, should not raise the ambient noise level above a maximum of 65 dBA. Ambient sound levels in industrial or commercial areas may exceed 65 dBA with a high end of approximately 79 dBA. In these instances, mitigation measures utilizing best management practices should be used in an effort to ensure minimum impacts.

This guidance document also states that sound level increases from 0-3 dBA should have no appreciable effect on receptors, increases from 3-6 dBA may have potential for adverse noise impact only in cases where the most sensitive of receptors are present, and increases of more than 6 dBA may require a closer analysis of impact potential depending on existing sound levels and the character of surrounding land use and receptors. An increase of 10 dBA deserves consideration of avoidance and mitigation measures in most cases.

The typical ability of an individual to perceive changes in noise levels is summarized in Table 4-1. These guidelines allow direct estimation of an individual's probable perception of a change in community noise levels.

Increase in Sound Pressure	Community
(dBA)	Reaction
0-3	No appreciable effect
3-6	Potential effect for sensitive receptors
Over 6	Closer analysis required
Source: NYSDEC, "Assessing and Mitig	gating Noise Impacts", Division of Environmental
Permits, February 2, 2001.	

Table 4-1Thresholds for Sound Pressure Level Increases

⁴ Program Policy Assessing and Mitigating Noise Impacts issued by the New York State Department of Environmental Conservation (NYSDEC), Feb. 2001

5.0 EXISTING SOUND LEVELS

Details of the existing sound level measurement methodology, measurement locations, instrumentation, and meteorological conditions can be found in §2.0 of the Environmental Sound Survey and Noble Impact Assessment Report issued by Hessler Associates, Inc. [Report No. 1813-063008-A], dated July 16, 2008 ("Hessler's Report"). A brief discussion of the measured background sound levels as a function of wind speed for use in evaluating compliance with NYSDEC noise guidelines can be found in §6.0 below.

6.0 FUTURE CONDITIONS

6.1 Equipment and Operating Conditions

6.1.1 GE 2.3-116

Each of the thirty-six (36) proposed GE 2.3 MW-116 wind turbines being considered for the Ball Hill Wind Project have a rotor diameter of 116 meters and a hub height of 94 meters. Table 6-1 presents the manufacturer-provided broadband sound power level, PWL, as a function of wind speed for the GE unit used as input to the model. Under peak sound-producing operating conditions, each turbine has an A-weighted sound power level of 107.5 dBA plus an uncertainty factor of 2.0 dBA, as provided by the manufacturer. Octave-band sound power levels are presented in Table 6-2 for hub height wind speeds of 10 m/s, corresponding to the maximum A-weighted sound power level output. This represents the operating condition for which compliance with the Town of Hanover and Town of Villenova noise limit of 50 dBA shall be evaluated.

Table 6-1GE 2.3-116 Broadband Sound Power Level (dBA) as a Function of Wind Speed

		Wind Speed at Hub Height of 94m AGL (m/s)							
	4 5 6 7 8 9 ≥10								
Turbine PWL ¹ (dBA)	95.0	95.8	98.2	101.6	104.5	105.8	107 .5		

1. Does not include uncertainty factor

Table 6-2GE 2.3-116 Octave-Band Sound Power Levels (dBA)

	Turbine PWL ¹ (dB) by Octave-Band Center Frequency (Hz)										
31.5 Hz 63 Hz 125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz 8 kHz											
78.7	88.7	95.1	99.9	102.9	102.1	97.7	89.2	68.4			

1. Octave-band sound power levels at hub height wind speeds of 10 m/s, not including uncertainty factor

The NYSDEC criteria discussed in §4.4 is based on an evaluation of the increase over ambient sound levels which vary both as a function of turbine output and wind speed. Critical operating conditions occur at a wind speed when the turbine sound level is highest relative to the ambient sound level. Table 6-3 below compares the relative difference between turbine output and ambient sound level based on the regression analysis provided in Figure 2.7.2 of Hessler's report which presents the measured background Leq sound level as a function of normalized wind speed at 10 meters AGL.

It can be seen from Table 6-3 that a hub height wind speed of 10 m/s corresponds to the highest wind turbine sound power output relative to measured background sound levels, representing "critical-case" conditions in terms of an increase over ambient. For the GE 2.3-116 turbine model, this same condition happens to coincide with the wind speed of maximum turbine sound level output.

Wind Speed at 94m (m/s)	4	5	6	7	8	9	10	11	12	13
Wind Speed at 10m ¹ (m/s)	2.8	3.5	4.2	4.9	5.6	6.3	7.0	7.7	8.4	9.1
Turbine PWL (dBA)	95.0	95.8	98.2	101.6	104.5	105.8	107.5	107.5	107.5	107.5
Background L _{eq} SPL ² (dBA)	39.4	40.2	40.9	41.7	42.5	43.2	44.0	44.7	45.5	46.2
Turbine PWL – Background SPL (dBA)	55.6	55.6	57.3	59.9	62.0	62.6	63.5	62.8	62.0	61.3

Table 6-3Comparison of Background SPL and GE 2.3-116 Turbine PWL to Determine
"Critical-Case" Design Wind Speed

1. Normalized using logarithmic profile described in IEC Standard 61400-11, Equation (7)

2. Calculated using regression line equation provided in Figure 2.7.2 of Hessler's report

6.1.2 Vestas V110-2.2

Each of the thirty-six (36) proposed Vestas V110-2.2 wind turbines being considered for the Ball Hill Wind Project have a rotor diameter of 110 meters and a hub height of 95 meters. Table 6-4 presents the manufacturer-provided broadband sound power level, PWL, as a function of wind speed for the Vestas unit used as input to the model. Under peak sound-producing operating conditions, each turbine has an A-weighted sound power level of 107.7 dBA plus an uncertainty factor of 2.0 dBA, as provided by the manufacturer. Octave-band sound power levels, as calculated from one-third octave band data, are presented in Table 6-5 for hub height wind speeds of 10 m/s, corresponding to the maximum A-weighted sound power level output. This represents the operating condition for which compliance with the Town of Hanover and Town of Villenova noise limit of 50 dBA shall be evaluated.

Table 6-4Vestas V110-2.2 Broadband Sound Power Level (dBA) as a Function of Wind Speed

		Wind Speed at Hub Height of 95m AGL (m/s)						
	4 5 6 7 8 9 ≥10							
Turbine PWL ¹ (dBA)	96.4	97.9	101.9	103.9	106.4	107.6	107.7	

1. Does not include uncertainty factor

Table 6-5 Vestas V110-2.2 Octave-Band Sound Power Levels (dBA)

Turbine PWL ¹ (dB) by Octave-Band Center Frequency (Hz)										
31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	8 kHz		
75.1	84.9	92.3	97.3	101.3	103.3	101.5	94.0	82.7		

1. Octave-band sound power levels at hub height wind speeds of 10 m/s, not including uncertainty factor

The NYSDEC criteria discussed in §4.4 is based on an evaluation of the increase over ambient sound levels which vary both as a function of turbine output and wind speed. Critical operating conditions occur at a wind speed when the turbine sound level is highest relative to the ambient sound level. Table 6-6 below compares the relative difference between turbine output and ambient sound level based on the regression analysis provided in Figure 2.7.2 of Hessler's report which presents the measured background Leq sound level as a function of normalized wind speed at 10 meters AGL.

It can be seen from Table 6-6 that a hub height wind speed of 9 m/s corresponds to the highest wind turbine sound power output relative to measured background sound levels, representing "critical-case" conditions in terms of an increase over ambient. For the Vestas V110-2.2 116 turbine model, the turbine sound power output at this wind speed is only 0.1 dBA less than the maximum output at 10 m/s.

Table 6-6Comparison of Background SPL and Vestas V110-2.2 Turbine PWL to Determine
"Critical-Case" Design Wind Speed

Wind Speed at 94m (m/s)	4	5	6	7	8	9	10	11	12	13
Wind Speed at 10m ¹ (m/s)	2.8	3.5	4.2	4.9	5.6	6.3	7.0	7.7	8.4	9.1
Turbine PWL (dBA)	96.4	97.9	101.9	103.9	106.4	107.6	107.7	107.7	107.7	107.7
Background L _{eq} SPL ² (dBA)	39.4	40.2	41.0	41.7	42.5	43.2	44.0	44.7	45.5	46.3
Turbine PWL – Background SPL (dBA)	57.0	57.7	60.9	62.2	63.9	64.4	63.7	63.0	62.2	61.4

1. Normalized using logarithmic profile described in IEC Standard 61400-11, Equation (7)

2. Calculated using regression line equation provided in Figure 2.7.2 of Hessler's report

6.1.3 Substation

A single utility scale transformer associated with the proposed substation was included in the model assuming the sound power level inputs presented in Table 6-7 below, based on information provided by RES for a representative unit.

	Table 6-7	Substation	Transformer	Sound Pov	ver Levels ¹ (dBA)
--	-----------	------------	-------------	-----------	-------------------------------

dBA	31.5 Hz	63 Hz	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz	8 kHz
106.8	64.0	83.2	95.3	97.8	103.2	100.4	96.6	91.4	82.3

1. Based on standard NEMA TR.1 Table 0-1 for one MVA, 120 kV utility scale transformer with 5 dB noise reduction by octave-band.

6.2 Modeling Methodology

Sound impacts associated with the proposed wind turbine generators and proposed substation transformer were predicted using Cadna/A noise calculation software (DataKustik Corporation, 2015). This software, which implements the ISO 9613-2 international standard for sound propagation (Acoustics - Attenuation of sound during propagation outdoors - Part 2: General method of calculation), offers a refined set of computations accounting for local topography, ground attenuation, drop-off with distance, barrier shielding, and atmospheric absorption of sound from multiple sound sources.

Inputs and significant parameters employed in the model are described below:

- *Project Layout:* A project layout comprised of a total of 36 proposed wind turbine locations and a proposed substation location was provided by RES along with a shapefile of the Project property boundary for use as input in the model.
- Sensitive Receptors: A shapefile of 335 structures was provided by RES and used as input to the model. All receptors were modeled with a height of 1.5 meters AGL to mimic the ears of a typical standing observer.
- *Terrain Elevation:* Elevation contours for the modeling domain with 3 meter resolution were directly imported into Cadna/A which allowed for consideration of terrain shielding where appropriate. These contours were generated from elevation information derived from the National Elevation Database (NED) developed by the U.S. Geological Survey.
- Source Sound Levels & Controls: Manufacturer-provided octave-band sound power levels for the GE 2.3-116 and Vestas V112-3.3 MW units, presented above in §6.1.1 and §6.1.2, respectively, were used as input in the model.
- *Meteorological Conditions:* A temperature of 10°C (50°F) and a relative humidity of 70% was assumed in the model.
- *Ground Attenuation:* Spectral ground absorption was calculated using a G-factor of 0.5 to represent a moderately reflective surface.

Several modeling assumptions inherent in the ISO 9613-2 calculation methodology, or selected as conditional inputs by the user, were implemented in the Cadna/A model to ensure conservative results (i.e., higher sound levels), and are described below:

• Modeled source sound power level inputs represent acoustic emissions measured in accordance with IEC 61400-11 corresponding to maximum sound power output, plus an additional manufacturer-provided uncertainty factor of 2 dBA.

- All modeled sources were assumed to be operating simultaneously and at the design wind speed corresponding to maximum sound power emissions.
- Predicted sound levels were computed with the assumption that each receptor was always located directly downwind from every turbine simultaneously. While a physical impossibility, this provides conservative results and is required by the ISO 9613-2 standard.
- As per ISO 9613-2, the model assumed favorable conditions for sound propagation, corresponding to a moderate, well-developed ground-based temperature inversion, as might occur on a calm, clear night.
- A mixture of hard and porous ground was assumed for the surrounding Project area to represent a surface that is partially reflective, a conservative assumption for much of the year when the ground would be covered in vegetation.
- Meteorological conditions assumed in the model (T = 10°C/RH = 70%) were selected to minimize atmospheric attenuation in the 500 Hz and 1 kHz octave-bands where the human ear is most sensitive.
- No additional attenuation due to tree shielding, air turbulence, or wind shadow effects was considered in the model.

Sound levels due to the operation of all 36 wind turbines were modeled at each of the 335 specific receptors representing the closest structures to the Project. In addition, sound levels were modeled across a large grid of receptor points, spaced 100 meters apart, to create sound level isopleths across the entire Project area.

6.3 Modeling Sound Level Results

6.3.1 GE 2.3-116

Modeling results for the GE 2.3-116 turbine, representing maximum Project-only L₁₀ sound levels, are illustrated in Figure 6-1 as iso-dBA contour lines overlaid on aerial imagery of the Project site. Predicted L₁₀ sound levels, ranging from 21 to 50 dBA, and L_{eq} sound levels, ranging from 20 to 49 dBA, are presented in tabular form in Table A-1of Appendix A at all 335 discrete modeling receptors representing the closest structures to the Project. These predicted sound levels which contain a manufacturer-provided uncertainty factor of 2 dBA are "Project-only" and do not include any contributions from existing background sound sources. The calculated maximum L₁₀ values shown in Figure 6-1 and presented in Table A-1 include an adjustment of 1 dBA added to the modeled maximum L_{eq} turbine sound levels. This allows for the approximate conversion of L_{eq} to L₁₀ sound levels used for evaluating compliance with the local noise limits, and is based on empirical data from several Epsilon Associates, Inc. measurement programs where wind turbines are the primary noise source.

Ball Hill Wind Project Hanover & Villenova, New York

Figure 6-1 Maximum Project-Only L₁₀ Sound Levels GE 2.3-116 (10m/s at 94m HH)

6.3.2 Vestas V110-2.2

Modeling results for the Vestas V110-2.2 turbine, representing maximum Project-only L₁₀ sound levels, are illustrated in Figure 6-2 as iso-dBA contour lines overlaid on aerial imagery of the Project site. Predicted L₁₀ sound levels, ranging from 18 to 50 dBA, and L_{eq} sound levels, ranging from 17 to 49 dBA, are presented in tabular form in Table B-10f Appendix Bat all 335 discrete modeling receptors representing the closest structures to the Project. These predicted sound levels which contain a manufacturer-provided uncertainty factor of 2 dBA are "Project-only" and do not include any contributions from existing background sound sources. The calculated maximum L₁₀ values shown in Figure 6-2 and presented in Table B-1 include an adjustment of 1 dBA added to the modeled maximum L_{eq} turbine sound levels. This allows for the approximate conversion of L_{eq} to L₁₀ sound levels used for evaluating compliance with the local noise limits, and is based on empirical data from several Epsilon Associates, Inc. measurement programs where wind turbines are the primary noise source.

The calculated "critical-case" L_{eq} values presented in Table B-1 at a hub height wind speed of 9 m/s include an adjustment of 0.1 dBA subtracted from the modeled maximum L_{eq} turbine sound levels produced at a hub height wind speed of 10 m/s. This accounts for the difference between turbine sound power levels under conditions of maximum output (10 m/s at hub height) and greatest Project impact in terms of an increase over background (9 m/s at hub height).

Ball Hill Wind Project Hanover & Villenova, New York

Figure 6-2

Maximum Project-Only L₁₀ Sound Levels Vestas V110 2.2 MW (10m/s at 95m HH)

7.0 EVALUATION OF SOUND LEVELS

7.1 GE 2.3-116

7.1.1 Local Regulations

As presented in Table A-1 of Appendix A and illustrated in Figure 6-1, predicted L₁₀ sound levels from the Project under conditions of maximum wind turbine sound power output (corresponding to a hub height wind speed of 10 m/s) are less than or equal to the 50 dBA limit specified by the Towns of Hanover and Villenova at all 335 receptors representing the closest structures to the Project.

With regard to "pure tones", as defined in §4.3, an evaluation of the maximum one-third octave-band sound power levels for the GE 2.3-116 model, provided by the turbine manufacturer, is presented in Table 7-1. This analysis indicates that even under conditions of maximum turbine sound power output, corresponding to hub height wind speeds of 10 m/s, no pure tones shall be emitted.

One-Third Octave-band Center Frequency (Hz)	Sound Power Level ¹ (dB)	Average Sound Power Level of Contiguous Bands (dB)	Difference between Sound Power Level and Contiguous Average ² (dB)	Tonal Limit (dB)	Meets Tonal Limit? ³
25	113.0	-	-	-	-
32	112.2	112.3	0	15	Yes
40	111.5	111.3	0	15	Yes
50	110.4	110.6	0	15	Yes
63	109.6	109.6	0	15	Yes
80	108.8	108.5	0	15	Yes
100	107.4	107.5	0	15	Yes
125	106.2	106.3	0	15	Yes
160	105.2	105.2	0	8	Yes
200	104.1	104.4	0	8	Yes
250	103.5	103.6	0	8	Yes
315	103.1	102.9	0	8	Yes
400	102.2	102.3	0	8	Yes
500	101.5	101.4	0	5	Yes
630	100.5	100.2	0	5	Yes
800	98.8	98.9	0	5	Yes
1000	97.3	97.4	0	5	Yes
1250	96.0	95.5	1	5	Yes
1600	93.6	93.7	0	5	Yes
2000	91.4	91.4	0	5	Yes
2500	89.2	89.0	0	5	Yes
3150	86.5	85.6	1	5	Yes

 Table 7-1
 Tonal Analysis & Compliance Evaluation: GE 2.3-116 Sound Power Level Emissions

One-Third Octave-band Center Frequency (Hz)	Sound Power Level ¹ (dB)	Average Sound Power Level of Contiguous Bands (dB)	Difference between Sound Power Level and Contiguous Average ² (dB)	Tonal Limit (dB)	Meets Tonal Limit? ³
4000	81.9	81.4	1	5	Yes
5000	76.3	75.1	1	5	Yes
6300	68.2	67.1	1	5	Yes
8000	57.8	57.5	0	5	Yes
10000	46.7	_	-	-	_

Table 7-1Tonal Analysis & Compliance Evaluation: GE 2.3-116 Sound Power Level Emissions
(Continued)

1. One-third octave-band sound power level for GE 2.3-116 turbine at hub height wind speeds of 10m/s

2. Rounded to the nearest whole number decibel

3. Compliance evaluation of "pure tone" criteria described in §4.3

Additionally, one-third octave-band received sound pressure levels were calculated at the closest structure (receptor #164) to a turbine (T11), accounting for geometric divergence and atmospheric absorption, at a distance of approximately 1,320 feet (400 meters). Results presented in Table 7-2 show that received sound pressure levels due to the Project are not expected to result in any pure tones, as defined by the Towns of Hanover and Villenova.

Table 7-2 Tonal Analysis: GE 2.3-116 Received Sound Pressure Levels

One-Third Octave-band Center Frequency (Hz)	Received Sound Pressure Level ¹ (dB)	Average Sound Pressure Level of Contiguous Bands (dB)	Difference between Sound Pressure Level and Contiguous Average ² (dB)	Tonal Limit (dB)	Meets Tonal Limit? ³
25	52.7	-	-	-	-
32	51.9	51.9	0	15	Yes
40	51.2	51.0	0	15	Yes
50	50.1	50.2	0	15	Yes
63	49.2	49.2	0	15	Yes
80	48.4	48.1	0	15	Yes
100	47.0	47.1	0	15	Yes
125	45.8	45.8	0	15	Yes
160	44.7	44.6	0	8	Yes
200	43.5	43.7	0	8	Yes
250	42.7	42.8	0	8	Yes
315	42.2	41.9	0	8	Yes
400	41.1	41.2	0	8	Yes
500	40.1	40.0	0	5	Yes
630	38.9	38.5	0	5	Yes
800	36.9	37.0	0	5	Yes
1000	35.1	35.2	0	5	Yes
1250	33.4	32.7	1	5	Yes
1600	30.3	30.4	0	5	Yes

One-Third Octave-band Center Frequency (Hz)	Received Sound Pressure Level ¹ (dB)	Average Sound Pressure Level of Contiguous Bands (dB)	Difference between Sound Pressure Level and Contiguous Average ² (dB)	Tonal Limit (dB)	Meets Tonal Limit? ³
2000	27.4	27.3	0	5	Yes
2500	24.3	23.4	1	5	Yes
3150	19.4	17.8	2	5	Yes
4000	11.2	10.0	1	5	Yes
5000	0.7	5.6	-5	5	Yes
6300	0.0	0.3	0	5	Yes
8000	0.0	0.0	0	5	Yes
10000	0.0	-	-	-	-

 Table 7-2
 Tonal Analysis: GE 2.3-116 Received Sound Pressure Levels (Continued)

 Calculated sound pressure level due to a single turbine at a distance of ~1,320 feet (receptor #164), based on maximum GE2.3-116 one-third octave-band sound power levels for hub height wind speeds of 10 m/s

2. Rounded to the nearest whole number decibel

3. Compliance evaluation of "pure tone" criteria described in §4.3

7.1.2 NYSDEC Criteria

The predicted L_{eq} sound levels at the nearest structures presented in Table A-1 of Appendix A were compared to the existing ambient L_{eq} sound levels with respect to the NYSDEC criteria discussed in §4.4. As shown in Table 6-3, the calculated background sound level for the Project area at the "critical-case" hub height wind speed of 10 m/s is 44.0 dBA. In order for the Project to meet the suggested 6 dBA cumulative increase threshold recommended in the NYSDEC guidance document, L_{eq} sound levels from the Project should remain at or below 49.4 dBA. That is to say, a Project level of 49.4 dBA added to a background level of 44.0 dBA would result in a combined level of 50.5 dBA, which is 6 dBA above background, when rounded to the nearest whole decibel.

Maximum L_{eq} sound levels from the Project are predicted to be no greater than 49.0 dBA even under conditions of maximum turbine sound power output. Additionally, future sound levels combining the Project with the existing background are anticipated to remain less than or equal to 50 dBA, well below the suggested 65 dBA threshold recommended in the NYSDEC guidance document.

7.1.3 Low Frequency Sound

Table 7-3 compares predicted maximum Project-only L₁₀ sound levels in the 32, 63 and 125 Hz octave-bands to the equivalent outdoor sound pressure levels corresponding to the NC-30 noise criteria curve recommended for bedrooms and to levels associated with "moderately perceptible vibration and rattle."⁵ Results indicate that of the ten residential locations of greatest potential Project impact, predicted sound levels are well below both relevant criteria, indicating that no low-frequency sound impacts are expected.

		Sound Pressure Level (d	B)
Modeling Receptor ID	31.5 Hz	63 Hz	125 Hz
	(dB)	(dB)	(dB)
185	66	63	55
184	65	62	55
117	63	61	55
186	65	62	54
116	63	61	54
164	65	61	54
187	65	62	54
188	65	62	54
190	65	61	54
191	65	61	54
NC-30 Equivalent Outdoor Sound Pressure Levels	74	66	57
Equivalent Outdoor Sound Pressure Levels for Moderately Perceptible Vibration & Rattle	71	79	NA

Table 7-3 Predicted Worst-Case Low Frequency Sound Levels

Another metric commonly used to assess low frequency noise is the "C-weighted" sound level. For the GE 2.3-116 turbine, the maximum C-weighted sound level at any of the 335 modeling receptors representing the closest structures to the Project is predicted to be less than or equal to 66 dBC. For context, ANSI Standard B133.8 "Gas Turbine Installation Sound Emissions" describes a threshold of 75 to 80 dBC as the approximate level at which complaints and the perception of vibrations due to airborne sound may occur.

⁵ O'Neal, Robert D., Hellweg Jr., Robert D., Lampeter, Richard M. "Low Frequency Noise and Infrasound from Wind Turbines." Noise Control Engineering Journal 59.2 (2011): 139. Print.

7.2 Vestas V110-2.2

7.2.1 Local Regulations

As presented in Table B-1 of Appendix B and illustrated in Figure 6-2, predicted L₁₀ sound levels from the Project under conditions of maximum wind turbine sound output (corresponding to a hub height wind speed of 10 m/s) are less than or equal to the 50 dBA limit specified by the Towns of Hanover and Villenova at all 335 receptors representing the closest structures to the Project.

With regard to "pure tones", as defined in §4.3, an evaluation of the maximum one-third octave-band sound power levels for the Vestas V110-2.2 model, provided by the turbine manufacturer, is presented in Table 7-4. This analysis indicates that even under conditions of maximum turbine sound power output, corresponding to hub height wind speeds of 10 m/s, no pure tones shall be emitted.

One-Third Octave-band Center Frequency (Hz)	Sound Power Level ¹ (dB)	Average Sound Power Level of Contiguous Bands (dB)	Difference between Sound Power Level and Contiguous Average ² (dB)	Tonal Limit (dB)	Meets Tonal Limit? ³
25	110.2	-	-	-	-
32	108.8	109.0	0	15	Yes
40	107.7	108.1	0	15	Yes
50	107.4	106.6	1	15	Yes
63	105.5	106.1	-1	15	Yes
80	104.8	105.0	0	15	Yes
100	104.4	104.2	0	15	Yes
125	103.6	103.4	0	15	Yes
160	102.4	102.5	0	8	Yes
200	101.3	102.0	-1	8	Yes
250	101.5	100.8	1	8	Yes
315	100.3	100.2	0	8	Yes
400	98.8	100.4	-2	8	Yes
500	100.5	99.2	1	5	Yes
630	99.5	100.1	-1	5	Yes
800	99.6	99.2	0	5	Yes
1000	98.8	98.5	0	5	Yes
1250	97.4	98.0	-1	5	Yes
1600	97.1	96.7	0	5	Yes
2000	95.9	95.0	1	5	Yes
2500	92.9	93.1	0	5	Yes
3150	90.3	90.4	0	5	Yes
4000	87.9	87.4	1	5	Yes
5000	84.5	84.8	0	5	Yes
6300	81.7	80.5	1	5	Yes

One-Third Octave-band Center Frequency (Hz)	Sound Power Level ¹ (dB)	Average Sound Power Level of Contiguous Bands (dB)	Difference between Sound Power Level and Contiguous Average ² (dB)	Tonal Limit (dB)	Meets Tonal Limit? ³
8000	76.4	76.6	0	5	Yes
10000	71.5	_	-	-	-

 Table 7-4
 Tonal Analysis: Vestas V110-2.2 Sound Power Level Emissions (Continued)

4. One-third octave-band sound power level for Vestas V110-2.2 turbine at hub height wind speeds of 10m/s

5. Rounded to the nearest whole number decibel

6. Compliance evaluation of "pure tone" criteria described in §4.3

Additionally, one-third octave-band received sound pressure levels were calculated at the closest structure (receptor #164) to a turbine (T11), accounting for geometric divergence and atmospheric absorption, at a distance of approximately 1,320 feet (400 meters). Results presented in Table 7-5 show that received sound pressure levels due to the Project are not expected to result in any pure tones, as defined by the Towns of Hanover and Villenova.

One-Third Octave-band Center Frequency (Hz)	Received Sound Pressure Level ¹ (dB)	Average Sound Pressure Level of Contiguous Bands (dB)	Difference between Sound Pressure Level and Contiguous Average ² (dB)	Tonal Limit (dB)	Meets Tonal Limit? ³
25	49.9	-	-	-	-
32	48.5	48.6	0	15	Yes
40	47.4	47.8	0	15	Yes
50	47.1	46.3	1	15	Yes
63	45.1	45.7	-1	15	Yes
80	44.4	44.6	0	15	Yes
100	44.0	43.8	0	15	Yes
125	43.2	42.9	0	15	Yes
160	41.9	41.9	0	8	Yes
200	40.7	41.3	-1	8	Yes
250	40.7	40.0	1	8	Yes
315	39.4	39.2	0	8	Yes
400	37.7	39.3	-2	8	Yes
500	39.1	37.8	1	5	Yes
630	37.9	38.4	-1	5	Yes
800	37.7	37.3	0	5	Yes
1000	36.6	36.3	0	5	Yes
1250	34.8	35.2	0	5	Yes
1600	33.8	33.3	0	5	Yes
2000	31.9	30.9	1	5	Yes
2500	28.0	27.6	0	5	Yes
3150	23.2	22.6	1	5	Yes
4000	17.2	16.0	1	5	Yes
5000	8.9	8.6	0	5	Yes
6300	-	-	_	5	Yes

Table 7-5Tonal Analysis: Vestas V110-2.2 Received Sound Pressure Levels

One-Third Octave-band Center Frequency (Hz)	Received Sound Pressure Level ¹ (dB)	Average Sound Pressure Level of Contiguous Bands (dB)	Difference between Sound Pressure Level and Contiguous Average ² (dB)	Tonal Limit (dB)	Meets Tonal Limit? ³
8000	-	-	-	5	Yes
10000	-	-	-	-	-

 Table 7-5
 Tonal Analysis: Vestas V110-2.2 Received Sound Pressure Levels (Continued)

 Calculated sound pressure level due to a single turbine at a distance of ~1,320 feet (receptor #164), based on Vestas V110-2.2 one-third octave-band sound power levels for hub height wind speeds of 10 m/s

5. Rounded to the nearest whole number decibel

6. Compliance evaluation of "pure tone" criteria described in §4.3

7.2.2 NYSDEC Criteria

The predicted L_{eq} sound levels at the nearest structures presented in Table B-1 of Appendix B were compared to the existing ambient L_{eq} sound levels with respect to the NYSDEC criteria discussed in §4.4. As shown in Table 6-6, the calculated background sound level for the Project area at the "critical-case" hub height wind speed of 10 m/s is 43.2 dBA. In order for the Project to meet the suggested 6 dBA cumulative increase threshold recommended in the NYSDEC guidance document, L_{eq} sound levels from the Project should remain at or below 48.6 dBA. That is to say, a Project level of 48.6 dBA added to a background level of 43.2 dBA would result in a combined level of 49.7 dBA, which is 6 dBA above background, when rounded to the nearest whole decibel.

Maximum L_{eq} sound levels from the Project are predicted to be no greater than 48.6 dBA even under conditions of maximum turbine sound power output. Additionally, future sound levels combining the Project with the existing background are anticipated to remain less than or equal to 50 dBA, well below the suggested 65 dBA threshold recommended in the NYSDEC guidance document.

7.2.3 Low Frequency Sound

Table 7-6 compares predicted maximum Project-only L₁₀ sound levels in the 32, 63 and 125 Hz octave-bands to the equivalent outdoor sound pressure levels corresponding to the NC-30 noise criteria curve recommended for bedrooms and to levels associated with "moderately perceptible vibration and rattle."⁶ Results indicate that of the ten residential locations of greatest potential Project impact, predicted sound levels are well below both relevant criteria, indicating that no low-frequency sound impacts are expected.

⁶ O'Neal, Robert D., Hellweg Jr., Robert D., Lampeter, Richard M. "Low Frequency Noise and Infrasound from Wind Turbines." Noise Control Engineering Journal 59.2 (2011): 139. Print.

		Sound Pressure Level (d	B)
Modeling Receptor ID	31.5 Hz	63 Hz	125 Hz
. .	(dB)	(dB)	(dB)
185	62	59	52
184	62	58	52
117	60	58	53
186	62	58	52
116	60	58	52
164	61	58	51
187	61	58	51
188	61	58	51
190	61	58	51
191	61	57	51
NC-30 Equivalent Outdoor Sound Pressure Levels	74	66	57
Equivalent Outdoor Sound Pressure Levels for Moderately Perceptible Vibration & Rattle	71	79	NA

 Table 7-6
 Predicted Worst-Case Low Frequency Sound Levels

Another metric commonly used to assess low frequency noise is the "C-weighted" sound level. For the GE 2.3-116 turbine, the maximum C-weighted sound level at any of the 335 modeling receptors representing the closest structures to the Project is predicted to be less than or equal to 63 dBC. For context, ANSI Standard B133.8 "Gas Turbine Installation Sound Emissions" describes a threshold of 75 to 80 dBC as the approximate level at which complaints and the perception of vibrations due to airborne sound may occur.

7.3 Construction Noise

A qualitative discussion of construction noise related to the proposed Ball Hill Wind Project can be found in §3.9 of Hessler's report.

8.0 CONCLUSIONS

A comprehensive sound level assessment conducted for the Ball Hill Wind Project indicates that predicted sound level impacts from the 36 proposed GE 2.3-116 or Vestas V110-2.2 wind turbine generators and proposed electrical substation are expected to meet the Town of Hanover and Town of Villenova noise limit at each of the closest residences to the Project. Additionally, the Project is anticipated to meet the suggested criteria recommended in the NYSDEC guidance document for avoiding the potential for adverse community noise impacts. No pure tones were identified in the sound power level spectra, nor in the calculated received sound pressure levels at the closest receptor for either turbine model under consideration. Low frequency sound levels at the closest receptors to the Project are also predicted to be well below the recommended criteria to avoid disturbance, vibration, and rattle indoors.

Due to the nature of wind turbine noise and the relative background sound levels in the area, noise from the project is likely to be audible at times at some of the closest residences. However, conservative modeling assumptions were made to account for the occasional occurrence of conditions which may favor propagation of sound from the Project or increase the perceptibility of turbine noise. A vast majority of the time, nominal sound levels from the project are likely to be significantly less than those predicted in this analysis which are based on worst-case conditions. Project impacts are anticipated to meet state guidelines for minimizing adverse impacts as well as all local noise limits applicable to the Project.

Appendix A GE2.3-116 Sound Level Modeling Results

Percenter ID	X [Easting]	Y [Northing]	L Sound Loval (dBA)	L Sound Loval (dBA)
Receptor ID	(m)	(m)		
1	302816	265915	47	46
2	303062	265009	44	43
3	305191	265773	44	43
4	302077	267473	47	46
5	303317	270713	39	38
6	306562	273118	44	43
7	306428	273119	44	43
8	306290	273124	44	43
9	306043	273124	45	44
10	305504	273134	44	43
11	304572	271425	44	43
12	304504	271850	44	43
13	304445	272016	45	44
14	304388	272119	44	43
15	304351	272270	44	43
16	304271	272458	43	42
17	304269	272595	43	42
18	304110	272442	42	41
19	304044	272792	40	39
20	304035	272914	40	39
21	304005	272998	39	38
22	304070	273082	39	38
23	304326	273049	41	40
24	304647	273058	43	42
25	304795	273071	44	43
26	305272	273037	45	44
27	305479	273038	45	44
28	305780	273057	46	45
29	306159	273007	46	45
30	307052	272474	48	47
31	306568	264695	39	38
32	307872	265954	44	43
33	307785	266589	45	44
34	307687	266902	42	41
35	307651	267057	41	40
36	307631	267162	41	40
37	307630	267259	40	39
38	307500	267618	41	40
39	307676	267861	40	39
40	307620	267705	41	40
41	307768	268373	39	38
42	307726	268473	39	38
43	307695	268697	40	39

Percenter ID	X [Easting]	Y [Northing]	L Sound Loval (dRA)	L _{eq} Sound Level (dBA)
Receptor ID	(m)	(m)		
44	307607	268996	40	39
45	307636	268987	40	39
46	307607	269078	41	40
47	307551	269187	41	40
48	307113	270181	43	42
49	301431	266088	44	43
50	301447	266087	44	43
51	301464	266086	44	43
52	301481	266086	44	43
53	301496	266085	44	43
54	301513	266086	44	43
55	301551	265937	43	42
56	301651	265829	41	40
57	301718	265666	40	39
58	301760	265559	39	38
59	301810	265444	39	38
60	301946	265227	37	36
61	302184	265032	37	36
62	302333	264927	37	36
63	303060	264346	37	36
64	304610	263870	42	41
65	303931	263816	41	40
66	303770	263877	41	40
67	303465	264022	39	38
68	304652	264176	45	44
69	301317	266111	43	42
70	301319	266170	44	43
71	301159	266760	45	44
72	301208	266825	46	45
73	301095	267065	45	44
74	301096	267157	44	43
75	301171	267530	45	44
76	301060	267617	44	43
77	301086	267702	44	43
78	301107	267760	45	44
79	301021	269276	36	35
80	302247	270408	35	34
81	302198	270448	34	33
82	302160	270303	35	34
83	302179	270025	37	36
84	302284	270129	37	36
85	302268	269916	37	36
86	302233	269840	37	36

Percenter ID	X [Easting]	Y [Northing]	L Sound Loval (dRA)	L Sound Loval (dBA)
Receptor ID	(m)	(m)		
87	303169	270580	38	37
88	303225	270805	38	37
89	303238	270896	37	36
90	303247	271357	37	36
91	303250	271126	37	36
92	303287	271050	38	37
93	303566	271315	39	38
94	306679	270496	45	44
95	306857	270363	44	43
96	305663	265233	42	41
97	305360	265532	44	43
98	304548	265897	45	44
99	304552	265741	45	44
100	303305	264670	44	43
101	302659	265073	39	38
102	302424	265823	44	43
103	302293	266227	45	44
104	302212	267996	45	44
105	302181	269216	39	38
106	306140	268101	46	45
107	303467	271303	38	37
108	303636	271373	39	38
109	303830	271290	40	39
110	304018	271217	41	41
111	304327	271230	43	42
112	304195	271180	42	42
113	304282	271175	43	42
114	304554	271050	45	44
115	305124	271012	48	48
116	305317	270961	49	48
117	305299	271032	49	49
118	306219	270653	47	46
119	306294	270529	46	45
120	306635	270468	46	45
121	305217	265751	44	43
122	305294	265773	44	43
123	305376	265881	45	44
124	304860	266004	45	44
125	304920	265937	44	43
126	305040	266024	45	44
127	305001	266065	45	44
128	304540	266678	47	46
129	304612	266708	47	46

Percenter ID	X [Easting]	Y [Northing]	L Sound Loval (dRA)	L Sound Loval (dRA)
Receptor ID	(m)	(m)		
130	304624	266261	46	45
131	304563	266547	47	46
132	304560	266330	47	46
133	304201	266060	48	47
134	304553	265710	45	44
135	304540	265268	46	45
136	304543	264872	47	46
137	304616	264818	47	46
138	303744	264614	47	46
139	303625	264756	47	46
140	302600	265208	42	41
141	302531	265801	44	43
142	302390	265923	44	43
143	302307	266133	45	44
144	302265	266270	46	45
145	302360	266507	46	45
146	302130	266778	48	47
147	302387	267035	47	46
148	302243	268037	44	43
149	302170	268433	43	42
150	302230	269033	40	39
151	302179	269113	39	38
152	302266	269257	39	38
153	302179	269629	38	37
154	302182	269727	37	36
155	302498	269739	38	37
156	302621	269512	39	38
157	302678	269533	39	38
158	302789	269383	40	39
159	303018	268964	42	41
160	303099	268975	42	41
161	303425	268424	45	44
162	303853	267847	48	47
163	303895	267899	48	47
164	303835	267563	49	48
165	304226	267300	46	45
166	304458	267026	47	46
167	304634	267265	46	45
168	304790	267568	48	47
169	304905	267711	48	47
170	306789	268162	46	45
171	306695	268166	46	45
172	306134	268292	45	44

Receptor ID	X [Easting]	Y [Northing]		L Sound Loval (dBA)
Receptor ID	(m)	(m)		
173	305966	268095	46	45
174	305827	268168	45	44
175	305647	268181	45	44
176	307391	264688	38	37
177	307293	265060	40	39
178	307067	265261	42	41
179	307146	265153	41	40
180	307223	265239	41	40
181	306927	265751	46	45
182	306887	265867	47	46
183	306826	265976	48	47
184	306568	266269	50	49
185	306372	266516	50	49
186	306260	266797	49	48
187	306195	267114	49	48
188	306052	267381	49	48
189	305900	267559	48	47
190	305931	267524	48	47
191	305710	267647	48	47
192	305811	267625	48	47
193	305735	267726	48	47
194	305520	267811	48	47
195	305569	267820	47	46
196	305441	267956	47	46
197	305246	268115	46	45
198	305326	268206	46	45
199	305057	268405	47	46
200	304987	268424	47	46
201	305010	268492	47	46
202	305096	268476	46	45
203	304909	268664	47	46
204	304773	268939	47	46
205	304832	268934	47	46
206	304742	269119	47	46
207	304117	269810	45	44
208	304248	269765	46	45
209	304371	269567	47	46
210	304405	269501	47	46
211	304558	269436	47	46
212	304491	269521	47	46
213	304369	269714	46	45
214	304276	269887	46	45
215	303681	270366	41	40

Receptor ID	X [Easting]	Y [Northing]		L Sound Loval (dBA)
Receptor ID	(m)	(m)		
216	304110	273182	39	38
217	304010	273223	38	37
218	303987	273122	39	38
219	304167	273070	40	39
220	304326	273176	40	39
221	304425	273164	41	40
222	304956	273123	44	43
223	305118	273130	44	43
224	305198	273188	43	42
225	303630	273247	36	35
226	303679	273355	36	35
227	304080	273406	38	37
228	303924	273435	37	36
229	304001	273622	37	36
230	304143	273664	37	36
231	304195	273737	36	35
232	302883	273602	33	32
233	302963	273571	33	32
234	303041	273610	33	32
235	303123	273574	34	33
236	303154	273704	34	33
237	303231	273726	34	33
238	303302	273651	34	33
239	303340	273768	34	33
240	303389	273787	34	33
241	303405	273705	34	33
242	303820	273882	35	34
243	303957	274038	35	34
244	304049	274016	35	34
245	304042	274080	35	34
246	304220	274075	35	34
247	304143	274132	35	34
248	304201	274158	35	34
249	304541	274573	34	33
250	304600	275104	32	31
251	304599	275511	31	30
252	304687	275427	32	31
253	304532	275725	31	30
254	304599	275862	30	29
255	304591	276000	30	29
256	304547	276365	29	28
257	304419	276387	28	28
258	304120	276752	23	22

Percenter ID	X [Easting]	Y [Northing]	ing]	L Sound Loval (dBA)
Receptor ID	(m)	(m)		
259	302409	275040	25	24
260	302437	275088	25	24
261	302681	275703	24	23
262	302854	275844	24	23
263	302905	275947	24	23
264	302991	275941	24	23
265	302810	276114	23	22
266	303094	276100	23	22
267	303029	276302	23	22
268	303095	276380	23	22
269	303253	276495	23	22
270	303589	276361	23	22
271	303455	276611	23	22
272	303736	276689	23	22
273	303372	276829	22	21
274	303416	277120	24	23
275	303476	277071	23	22
276	303508	277092	23	22
277	303541	277259	24	23
278	302211	275001	25	24
279	301774	275328	26	25
280	301844	275482	25	24
281	301933	275539	25	24
282	301974	275643	26	25
283	301991	275676	26	25
284	302040	275788	26	25
285	302079	275857	26	25
286	302115	276021	26	25
287	302194	276144	26	25
288	302227	276210	26	25
289	302262	276323	26	25
290	302258	276441	25	24
291	302198	276398	25	24
292	302322	276511	25	24
293	302360	276632	26	25
294	302338	276659	26	25
295	302407	276881	24	23
296	302471	276932	24	23
297	302675	276977	26	25
298	302705	277227	25	24
299	302674	277357	25	24
300	302691	277496	25	24
301	302603	277817	24	23

Recenter ID	X [Easting]	Y [Northing]	L ₁₀ Sound Level (dBA)	L _{eq} Sound Level (dBA)
Receptor ID	(m)	(m)		
302	302590	277890	24	23
303	302569	277975	24	23
304	302505	278040	24	23
305	302579	278128	24	23
306	302581	278186	24	23
307	302592	278348	23	22
308	302463	278388	23	22
309	302584	278477	23	22
310	302515	278554	23	22
311	302576	278510	23	22
312	302603	278548	23	22
313	302357	279197	21	20
314	302582	278609	23	22
315	302422	279117	21	20
316	302523	279171	21	20
317	301843	279138	21	20
318	302583	278977	22	21
319	302860	279182	22	21
320	302983	279111	22	21
321	303089	279177	22	21
322	303218	279089	22	21
323	303319	279132	22	21
324	303398	279119	22	21
325	303511	279192	22	21
326	304044	278408	24	23
327	304095	278243	24	23
328	304026	278056	25	24
329	303777	277805	25	24
330	303671	277642	25	24
331	303768	277573	24	23
332	303792	277727	25	24
333	305587	270835	48	47
334	303506	268153	46	45
335	303739	267052	48	47

Appendix B Vestas V110-2.2 Sound Level Modeling Results

Receptor ID	X [Easting]	Y [Northing]	L Sound Loval (dRA)	L Sound Loval (dBA)
Receptor ID	(m)	(m)		
1	302816	265915	46	45
2	303062	265009	44	43
3	305191	265773	43	42
4	302077	267473	47	46
5	303317	270713	38	37
6	306562	273118	43	42
7	306428	273119	43	42
8	306290	273124	44	43
9	306043	273124	45	43
10	305504	273134	44	43
11	304572	271425	43	42
12	304504	271850	43	42
13	304445	272016	44	43
14	304388	272119	44	43
15	304351	272270	44	43
16	304271	272458	43	41
17	304269	272595	42	41
18	304110	272442	41	40
19	304044	272792	39	38
20	304035	272914	39	38
21	304005	272998	38	37
22	304070	273082	38	37
23	304326	273049	40	39
24	304647	273058	42	41
25	304795	273071	43	42
26	305272	273037	44	43
27	305479	273038	45	44
28	305780	273057	45	44
29	306159	273007	46	45
30	307052	272474	48	47
31	306568	264695	38	37
32	307872	265954	44	43
33	307785	266589	45	44
34	307687	266902	42	40
35	307651	267057	41	39
36	307631	267162	40	39
37	307630	267259	39	38
38	307500	267618	40	39
39	307676	267861	39	38
40	307620	267705	40	39
41	307768	268373	38	37
42	307726	268473	38	37
43	307695	268697	38	37

Percenter ID	X [Easting]	Y [Northing]	L Sound Loval (dBA)	L Sound Loval (dBA)
Receptor ID	(m)	(m)		
44	307607	268996	39	38
45	307636	268987	39	38
46	307607	269078	40	39
47	307551	269187	40	39
48	307113	270181	42	41
49	301431	266088	44	42
50	301447	266087	44	43
51	301464	266086	44	43
52	301481	266086	44	43
53	301496	266085	44	43
54	301513	266086	44	43
55	301551	265937	42	41
56	301651	265829	41	40
57	301718	265666	39	38
58	301760	265559	38	37
59	301810	265444	37	36
60	301946	265227	36	35
61	302184	265032	36	35
62	302333	264927	36	34
63	303060	264346	35	34
64	304610	263870	41	40
65	303931	263816	40	39
66	303770	263877	41	39
67	303465	264022	39	38
68	304652	264176	45	43
69	301317	266111	43	42
70	301319	266170	44	43
71	301159	266760	45	44
72	301208	266825	46	45
73	301095	267065	44	43
74	301096	267157	44	43
75	301171	267530	45	43
76	301060	267617	44	42
77	301086	267702	44	43
78	301107	267760	45	43
79	301021	269276	35	34
80	302247	270408	33	32
81	302198	270448	33	32
82	302160	270303	34	33
83	302179	270025	35	34
84	302284	270129	35	34
85	302268	269916	36	35
86	302233	269840	36	35

Recentor ID	X [Easting]	Y [Northing]	L Sound Loval (dBA)	L Sound Loval (dBA)
Receptor ID	(m)	(m)		
87	303169	270580	37	36
88	303225	270805	37	36
89	303238	270896	36	35
90	303247	271357	35	34
91	303250	271126	36	35
92	303287	271050	36	35
93	303566	271315	38	37
94	306679	270496	45	44
95	306857	270363	44	42
96	305663	265233	41	40
97	305360	265532	43	42
98	304548	265897	45	44
99	304552	265741	45	43
100	303305	264670	43	42
101	302659	265073	37	36
102	302424	265823	43	42
103	302293	266227	45	44
104	302212	267996	44	43
105	302181	269216	38	37
106	306140	268101	46	44
107	303467	271303	37	36
108	303636	271373	38	37
109	303830	271290	39	38
110	304018	271217	41	40
111	304327	271230	42	41
112	304195	271180	42	41
113	304282	271175	42	41
114	304554	271050	44	43
115	305124	271012	48	47
116	305317	270961	48	48
117	305299	271032	49	49
118	306219	270653	46	45
119	306294	270529	46	45
120	306635	270468	45	44
121	305217	265751	43	42
122	305294	265773	44	43
123	305376	265881	45	44
124	304860	266004	44	43
125	304920	265937	43	42
126	305040	266024	44	43
127	305001	266065	44	43
128	304540	266678	47	46
129	304612	266708	46	45

Percenter ID	X [Easting]	Y [Northing]		L Sound Loval (dRA)
Receptor ID	(m)	(m)		L _{eq} Sound Level (ubA)
130	304624	266261	45	44
131	304563	266547	47	46
132	304560	266330	46	45
133	304201	266060	47	46
134	304553	265710	45	44
135	304540	265268	46	45
136	304543	264872	47	46
137	304616	264818	47	45
138	303744	264614	47	46
139	303625	264756	47	46
140	302600	265208	41	40
141	302531	265801	44	43
142	302390	265923	43	42
143	302307	266133	44	43
144	302265	266270	45	44
145	302360	266507	46	45
146	302130	266778	48	47
147	302387	267035	47	46
148	302243	268037	44	43
149	302170	268433	42	41
150	302230	269033	39	37
151	302179	269113	38	37
152	302266	269257	38	37
153	302179	269629	36	35
154	302182	269727	36	35
155	302498	269739	37	36
156	302621	269512	38	37
157	302678	269533	38	37
158	302789	269383	39	38
159	303018	268964	41	40
160	303099	268975	41	40
161	303425	268424	44	43
162	303853	267847	47	46
163	303895	267899	47	46
164	303835	267563	48	47
165	304226	267300	46	45
166	304458	267026	46	45
167	304634	267265	46	45
168	304790	267568	47	46
169	304905	267711	48	47
170	306789	268162	45	44
171	306695	268166	46	45
172	306134	268292	45	43

Receptor ID	X [Easting]	Y [Northing]	L ₁₀ Sound Level (dBA)	L _{eq} Sound Level (dBA)
	(m)	(m)		
173	305966	268095	45	44
174	305827	268168	44	43
175	305647	268181	45	43
176	307391	264688	36	35
177	307293	265060	39	38
178	307067	265261	41	40
179	307146	265153	40	39
180	307223	265239	40	39
181	306927	265751	45	44
182	306887	265867	46	45
183	306826	265976	47	46
184	306568	266269	49	48
185	306372	266516	50	49
186	306260	266797	49	48
187	306195	267114	48	47
188	306052	267381	48	47
189	305900	267559	48	47
190	305931	267524	48	47
191	305710	267647	48	47
192	305811	267625	48	47
193	305735	267726	47	46
194	305520	267811	47	46
195	305569	267820	47	46
196	305441	267956	46	45
197	305246	268115	46	45
198	305326	268206	45	44
199	305057	268405	46	45
200	304987	268424	47	46
201	305010	268492	46	45
202	305096	268476	46	44
203	304909	268664	46	45
204	304773	268939	46	45
205	304832	268934	46	45
206	304742	269119	46	45
207	304117	269810	45	44
208	304248	269765	45	44
209	304371	269567	47	45
210	304405	269501	47	46
211	304558	269436	47	45
212	304491	269521	47	45
213	304369	269714	46	45
214	304276	269887	45	44
215	303681	270366	40	39

Receptor ID	X [Easting]	Y [Northing]	L ₁₀ Sound Level (dBA)	L _{eq} Sound Level (dBA)
	(m)	(m)		
216	304110	273182	38	37
217	304010	273223	37	36
218	303987	273122	37	36
219	304167	273070	39	38
220	304326	273176	39	38
221	304425	273164	40	39
222	304956	273123	43	42
223	305118	273130	43	42
224	305198	273188	43	42
225	303630	273247	35	34
226	303679	273355	35	34
227	304080	273406	37	36
228	303924	273435	36	35
229	304001	273622	35	34
230	304143	273664	35	34
231	304195	273737	35	34
232	302883	273602	31	30
233	302963	273571	31	30
234	303041	273610	32	30
235	303123	273574	32	31
236	303154	273704	32	31
237	303231	273726	32	31
238	303302	273651	32	31
239	303340	273768	32	31
240	303389	273787	32	31
241	303405	273705	33	32
242	303820	273882	34	32
243	303957	274038	33	32
244	304049	274016	34	33
245	304042	274080	33	32
246	304220	274075	34	33
247	304143	274132	34	32
248	304201	274158	34	32
249	304541	274573	32	31
250	304600	275104	30	29
251	304599	275511	29	28
252	304687	275427	29	28
253	304532	275725	28	27
254	304599	275862	28	27
255	304591	276000	28	27
256	304547	276365	27	25
257	304419	276387	26	25
258	304120	276752	20	19

Receptor ID	X [Easting]	Y [Northing]	L ₁₀ Sound Level (dBA)	L _{eq} Sound Level (dBA)
	(m)	(m)		
259	302409	275040	23	22
260	302437	275088	23	22
261	302681	275703	22	20
262	302854	275844	21	20
263	302905	275947	21	20
264	302991	275941	21	20
265	302810	276114	21	20
266	303094	276100	21	20
267	303029	276302	21	19
268	303095	276380	20	19
269	303253	276495	20	19
270	303589	276361	21	20
271	303455	276611	20	19
272	303736	276689	20	19
273	303372	276829	20	19
274	303416	277120	21	20
275	303476	277071	20	19
276	303508	277092	20	19
277	303541	277259	22	20
278	302211	275001	22	21
279	301774	275328	23	22
280	301844	275482	23	22
281	301933	275539	23	22
282	301974	275643	24	23
283	301991	275676	24	23
284	302040	275788	23	22
285	302079	275857	23	22
286	302115	276021	23	22
287	302194	276144	23	22
288	302227	276210	23	22
289	302262	276323	23	22
290	302258	276441	23	22
291	302198	276398	23	22
292	302322	276511	23	22
293	302360	276632	23	22
294	302338	276659	23	22
295	302407	276881	22	21
296	302471	276932	21	20
297	302675	276977	23	22
298	302705	277227	23	21
299	302674	277357	23	21
300	302691	277496	22	21
301	302603	277817	22	20

Receptor ID	X [Easting]	Y [Northing]	L ₁₀ Sound Level (dBA)	L _{eq} Sound Level (dBA)
	(m)	(m)		
302	302590	277890	21	20
303	302569	277975	21	20
304	302505	278040	21	20
305	302579	278128	21	20
306	302581	278186	21	20
307	302592	278348	20	19
308	302463	278388	20	19
309	302584	278477	20	19
310	302515	278554	20	19
311	302576	278510	20	19
312	302603	278548	20	19
313	302357	279197	18	17
314	302582	278609	20	19
315	302422	279117	18	17
316	302523	279171	18	17
317	301843	279138	18	17
318	302583	278977	19	18
319	302860	279182	19	18
320	302983	279111	19	18
321	303089	279177	19	18
322	303218	279089	19	18
323	303319	279132	19	18
324	303398	279119	19	18
325	303511	279192	19	18
326	304044	278408	21	20
327	304095	278243	21	20
328	304026	278056	22	21
329	303777	277805	22	21
330	303671	277642	22	21
331	303768	277573	22	21
332	303792	277727	22	21
333	305587	270835	47	46
334	303506	268153	46	45
335	303739	267052	47	46