

Northland Power Inc. on behalf of Northland Power Solar Long Lake L.P. Toronto, Ontario

Natural Heritage Site Investigation Report

Long Lake Solar Project

H334844-0000-07-124-0295 Rev. 1 October 18, 2012

Disclaimer

This report has been prepared by or on behalf of Northland Power Inc. for submission to the Ontario Ministry of the Environment as part of the Renewable Energy Approval process. The content of this report is not intended for the use of, nor is it intended to be relied upon by, any other person. Neither Northland Power Inc. nor any of its directors, officers, employees, agents or consultants has any liability whatsoever for any loss, damage or injury suffered by any third party arising out of, or in connection with, their use of this report.

Project Report

October 18, 2012

Northland Power Inc. Long Lake Solar Project

Natural Heritage Site Investigation Report

Table of Contents

1.	Introduction	3
	1.1 Project Description	3
	1.2 Legislative Requirements	
2.	Summary of Results of Records Review	7
3.	Site Investigation Methodology	7
	3.1 Wetland Communities	7
	3.1.1 Date, Times and Duration of Site Investigation	
	3.1.2 Weather Conditions During Site Investigation	
	3.2 Wildlife Habitats	8
	3.2.1 Site Investigation 1	
	3.2.2 Site Investigation 2	9
	3.2.3 Site Investigation 3	10
4.	Results of Site Investigation	11
	4.1 Wetland Communities	11
	4.2 Wildlife Habitat	14
	4.2.1 Habitats of Seasonal Concentrations of Animals	
	4.2.2 Rare Vegetation Communities or Specialized Habitat for Wildlife	16
	4.2.3 Habitat of Species of Conservation Concern	
	4.2.4 Animal Movement Corridors	
	4.2.5 Summary	21
5.	Conclusions	23
6.	References	24
-	opendix A Site Investigation Field Notes Opendix B Natural Resource Solutions Inc., Long Lake Solar Project – Summary of Wetland and Upland Vegetation Receding/Evening Bird and Amphibian Call Surveys	on Mapping,

Long Lake Solar Project Natural Heritage Site Investigation Report

List of Tables

Table 2.1	Summary of Records Review Determinations	
Table 4.1	Wetland Communities	12
Table 4.2	Wetland Vegetation Type Descriptions	
Table 4.3	Vegetation Species of Conservation Concern	20
Table 4.4	Candidate Significant Wildlife Habitats	21
	List of Figures	
Figure 1.1	Project Location and Natural Heritage Features	5

1. Introduction

1.1 Project Description

Northland Power Inc. (hereinafter referred to as "Northland") is proposing to develop a Class 3 10-megawatt (MW) ground mounted solar photovoltaic (Solar PV) facility in the unorganized township of Calder. This Project, known as the Long Lake Solar Project, is hereafter referred to as "Long Lake" or the "Project."

The Project location is approximately 123 hectares (ha) in size and located on Lots 2 and 3, in the unorganized Township of Calder, with a transmission line associated with the Project that traverses across the northern portion of Lot 1. The Project location is situated on Clute Concession Road 7\9 (shown in Figure 1.1).

1.2 Legislative Requirements

Ontario Regulation (O. Reg.) 359/09 – Renewable Energy Approvals Under Part V.0.1 of the Act, (herein referred to as the REA Regulation) made under the Environmental Protection Act identifies the Renewable Energy Approval (REA) requirements for renewable energy projects in Ontario. Per Section 4 of the REA Regulation, ground-mounted solar facilities with a nameplate capacity greater than 10 kilowatts (kW) are classified as Class 3 solar facilities and require a REA.

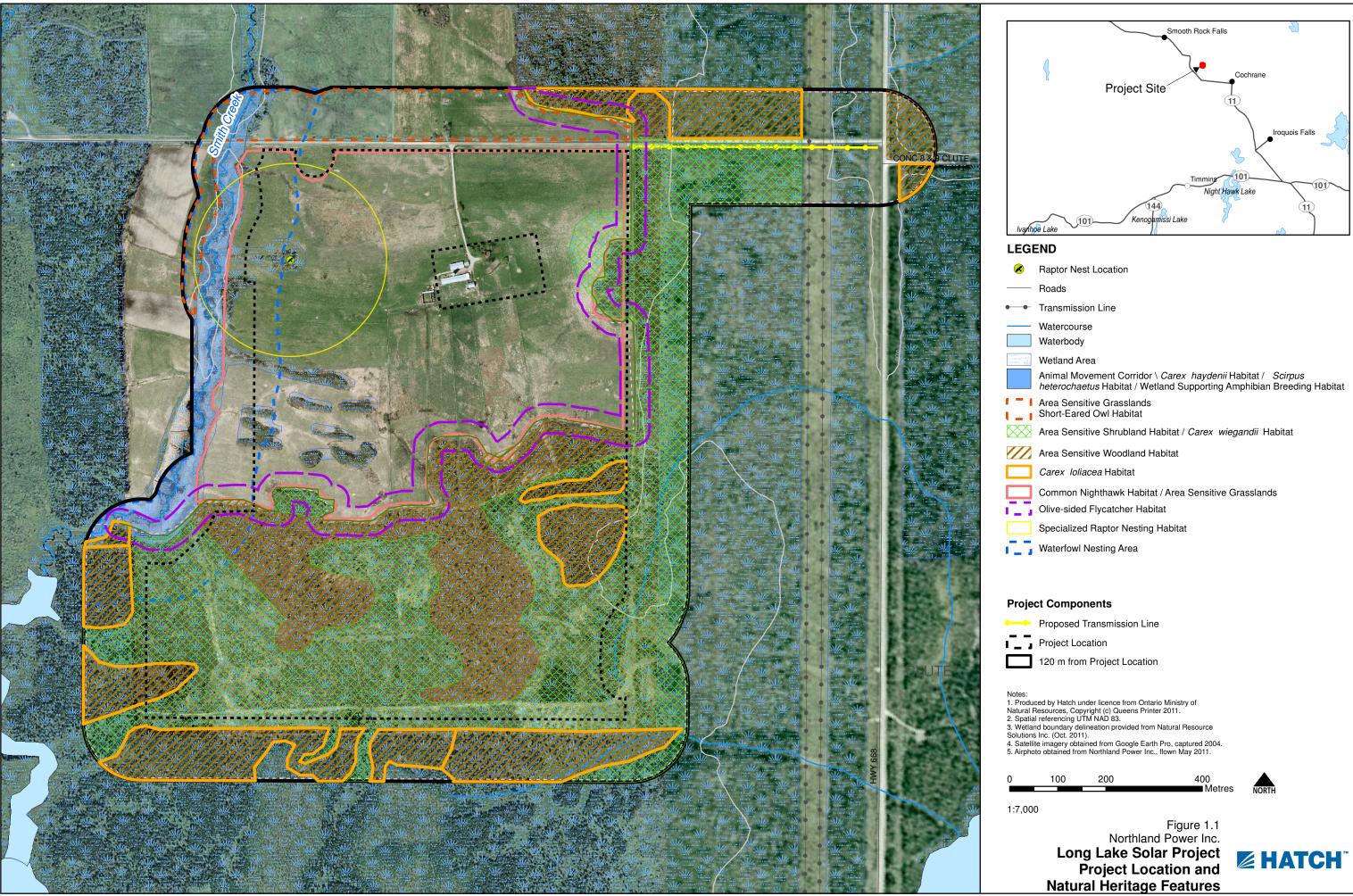
Section 26 of the REA Regulation requires proponents of Class 3 solar projects to undertake a natural heritage site investigation for the purpose of determining

- whether the results of the analysis summarized in the Natural Heritage Records Review Report prepared under Subsection 25(3) are correct or require correction, and identifying any required corrections
- whether any additional natural features exist, other than those that were identified in the Natural Heritage Records Review] report prepared under Subsection 25(3)
- the boundaries, located within 120 m of the Project location, of any natural feature that was identified in the records review or the site investigation
- the distance from the project location to the boundaries determined under Clause (c).

Natural features are defined in Section 1.1 of the REA Regulation to be all or part of

- a) an area of natural and scientific interest (ANSI) (earth science)
- b) an ANSI (life science)
- c) a coastal wetland
- d) a northern wetland
- e) a southern wetland
- f) a valleyland

- g) a wildlife habitat, or
- h) a woodland.


With respect to valleylands and woodlands, Section 1.1 of the REA Regulation identifies that these features are only found south and east of the Canadian Shield. As the Project location is north of the Canadian Shield, it is not possible for valleylands or woodlands to be located on or within 120 m of the Project location.

Subsection 3 of Section 26 of the REA Regulation requires the proponent to prepare a report setting out the following:

- 1. A summary of any corrections to the Natural Heritage Records Review report prepared under Subsection 25(3) and the determinations made as a result of conducting the site investigations under Subsection (1).
- 2. Information relating to each natural feature identified in the records review and in the site investigations, including the type, attributes, composition and function of the feature.
- 3. A map showing
 - the boundaries mentioned in Clause (1)(c)
 - the location and type of each natural feature identified in relation to the project location
 - the distance mentioned in Clause (1)(d).
- 4. The dates and times of the beginning and completion of the site investigation.
- 5. The duration of the site investigation.
- 6. The weather conditions during the site investigation.
- 7. A summary of methods used to make observations for the purposes of the site investigation.
- 8. The name and qualifications of any person conducting the site investigation.
- 9. Field notes kept by the person conducting the site investigation.

This Natural Heritage Site Investigations Report has been prepared to meet these requirements.

Long Lake Solar Project Natural Heritage Site Investigation Report

Blank back

2. Summary of Results of Records Review

Table 2.1 summarizes the results of the records review (Hatch Ltd., 2011).

Table 2.1 Summary of Records Review Determinations

Determination to be Made	Yes/No	Description
Is the Project in or within 120 m of a	No	The nearest such features are located
provincial park or conservation reserve?		more than 120 m away from the Project
		location.
Is the Project in a natural feature?	No	The nearest features are located more
		than 120 m away from the Project
		location
Is the Project within 50 m of an ANSI	No	The nearest earth science ANSI is located
(earth science)?		several kilometres from the Project
		location.
Is the Project within 120 m of a natural	Yes	There are wetlands within 120 m of the
feature that is not an ANSI (earth		Project location.
science)?		

Therefore, Project components will be located on or within 120 m of natural features.

3. Site Investigation Methodology

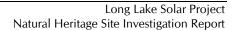
There are two natural features that were considered during the site investigation, wetlands and wildlife habitats. Methodologies re detection of these candidate significant features are identified below

3.1 Wetland Communities

Wetland communities were classified according to the Ontario Wetland Evaluation System (OWES) – Northern Manual. Wetland boundaries were delineated in accordance with the protocols outlined within the OWES – Northern Manual. Wetland site investigations were completed in 2011 by certified wetland evaluators from Natural Resources Solutions Inc. (NRSI). The Project location and lands within 120 m were surveyed in accordance with OWES Protocols. Dates, start time, end times, duration, and weather conditions are provided below.

Additional details on the methodology, field notes from this site investigation, as well as names and qualifications of persons conducting the site investigations, are included within Appendix B.

3.1.1 Date, Times and Duration of Site Investigation


Date: June 23, 201

• Start Time: 0530

• End Time: 1048

• Duration: (3.5 hours on and within 120 m of the Project location; 1.5 hours at Syndicate and Kennedy Lakes).

3.1.2 Weather Conditions During Site Investigation

• Temperature: 16°C

Beaufort Wind: 1 to 2

3.2 Wildlife Habitats

Wildlife Habitats were searched for during several site investigations, discussed separately below.

3.2.1 Site Investigation 1

The purpose of this site investigation was to complete general characterization of the types of wildlife habitats available on and within 120 m of the Project location, including documentation of any wildlife species observed and vegetation communities.

All habitats on and within 120 m of the Project location were searched by the observers on foot as part of the survey. Areas beyond 120 m from the Project location were also considered for potential occurrences of wildlife habitats. Photographs of the site were taken. Any observations of wildlife, vegetation, or natural features were noted. Field notes from the Site Investigation are included within Appendix A.

3.2.1.1 Date, Times and Duration of Site Investigation

Date: August 24, 2010

• Start Time: 0900

• End Time: 1330

Duration: approximately 4.5 hours.

3.2.1.2 Weather Conditions During Site Investigation

• Temperature: 16°C

Beaufort Wind: 4 to 6

Cloud Cover: 100%.

3.2.1.3 Name and Qualifications of Person Conducting Site Investigation

The site investigation was completed by Martine Esraelian.

Martine Esraelian, B.Sc. is an Environmental Scientist specializing in species at risk and terrestrial ecosystems. She has a B.Sc. from Trent University where she specialized in Conservation Biology and Ecological Management and an Ecosystem Management Technician diploma from Sir Sandford Fleming College. During her time at Trent University, she completed a 1-yr internship with the Ministry of Natural Resources (MNR) which involved developing a genetic-based protocol for the extraction of DNA from unknown turtle eggshells to assist with species identification. The project entailed extensive molecular genetics research and intensive lab work to develop a protocol able to supplement existing conservation management practices.

She offers expertise across the full breadth of the field from environmental assessments and technical analysis of environmental data to conservation management, corporate and government consulting,

and community outreach. Martine has liaised with all levels of government, the community, and a portfolio of clients that includes consulting firms, planners, and high-profile developers. She has both technical and hands-on experience conducting site investigations (terrestrial and aquatic), evaluations of significance, environmental and agricultural impact studies, constraint analyses, water quality and soil assessments, species at risk, wildlife management and fisheries studies to meet regulatory requirements.

Martine has a wide range of field experience related to terrestrial and aquatic ecosystems and species at risk. She has conducted reptile and amphibian surveys, small-mammal trapping, benthic invertebrate monitoring and fisheries inventories (seine netting and electrofishing). She has conducted detailed natural areas inventories which involve species identification of flora and fauna, vegetation community mapping, identifying rare vegetation communities and significant wildlife habitats.

Martine has project management and fieldwork experience for a number of species at risk monitoring projects. Some of the species she has been involved with include: fowler's toad, eastern massasauga rattlesnake, eastern ratsnake, queensnake, eastern ribbonsnake, milksnake, blanding's turtle, map turtle, spotted turtle, snapping turtle, Jefferson salamander, northern dusky and mountain alleghany dusky salamander, butternut, flowering dogwood, swamp rose mallow and spoon-leaved moss.

Martine is a certified Butternut Health Assessor and also holds a certificate in the Ecological Land Classification (ELC) system.

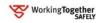
3.2.2 Site Investigation 2

The purpose of this site investigation was to complete a survey for reptile hibernacula during the peak of reptile emergence, and to search for evidence of raptor nesting occurring on or within 120 m of the Project location.

Reptile hibernacula were searched for by completing transect surveys across the Project location and lands within 120 m to look for suitable features. Transects were spaced 50 m apart within the agricultural lands, and 20 m apart within woodland communities. Non-swamp wetland habitats were not searched for hibernacula given the low probability of occurrence.

Raptor nesting locations were searched for by traversing through the woodland communities, searching for stick nests prior to leaf out. Where stick nests were observed, the locations were GPS'd, and the nest observed for activity in order to determine if the nesting location was active.

Copies of the field notes from this site investigation are provided within Appendix A.


3.2.2.1 Date, Times and Duration of Site Investigation

Date: May 18, 2011

• Start Time: 0830

End Time: 1430

Duration: 6 hours.

Long Lake Solar Project Natural Heritage Site Investigation Report

3.2.2.2 Weather Conditions During Site Investigation

• Temperature: 13 to 20°C

Beaufort Wind: 3

• Cloud Cover: 50 to 70%.

3.2.2.3 Name and Qualifications of Person Conducting Site Investigation

This site investigation was completed by Caleb Coughlin and Shelley Potter. Their qualifications are provided below.

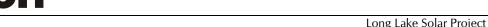
Caleb is an environmental technologist with experience in fisheries and fish habitat assessments. Recent projects have included spawning surveys (Muskoka and Trout Lake rivers), Riverine Index Netting (White Lake and Mattagami River), Fall Walleye Index Netting (Mattagami River), forage fish collection, Brook Trout mark and recapture studies and Ontario Broad-scale Monitoring (OBM). A recent study required a complete fish community inventory involving electrofishing, trap netting and seine netting (Shickluna Hydro Development). He has participated in a number of other resource management studies focusing on aquatic and terrestrial ecosystems including assessments of natural heritage features, aquatic invasive species, avian populations, amphibian and reptile populations, large mammals, furbearers and sustainable forestry practises.

Shelley Potter is an environmental professional with a marine and freshwater biology honours graduate from the University of Guelph. Previous work and internships have provided experience in the fields of environmental science, sustainable development, water conservation and analysis, fresh water biology, marine mammal biology, Ichthyology and Oceanography. Shelley recently completed an internship with the University of Queensland working with Dr. Mike Noad at the Humpback Whale Acoustic Research Collaboration. Marine Mammal Observing experience, acoustic recording experience and ability to geographically track migration patterns of humpback whales using a theodolite and Cyclops computer program was acquired. Shelley has also recently participated in terrestrial and aquatic field surveys for various renewable energy projects in Ontario.

3.2.3 Site Investigation 3

The purpose of this site investigation was to (i) complete a Bald Eagle nesting survey at Kennedy and Syndicate lakes near the Project location, and (ii) complete vegetation community classification and mapping using the Forest Ecosystem Classification (FEC) for northeastern Ontario and the Ontario Wetland Evaluation System (OWES) – Northern Manual where appropriate. Wetland boundaries were delineated in accordance with the protocols outlined within the OWES – Northern Manual.

This site investigation was completed by NRSI.


3.2.3.1 Date, Times and Duration of Site Investigation

Date: June 23, 2011

Start Time: 0530

• End Time: 1048

Natural Heritage Site Investigation Report

■ HATCH

• Duration: (3.5 hours on and within 120 m of the Project location; 1.5 hours at Syndicate and Kennedy lakes).

3.2.3.2 Weather Conditions During Site Investigation

Temperature: 16°C

• Beaufort Wind: 1 to 2.

Cloud Cover: 100%

3.2.3.3 Name and Qualifications of Person Conducting Site Investigation

Names and qualifications of NRSI staff conducting the site investigations are provided in Appendix B.

4. Results of Site Investigation

4.1 Wetland Communities

There were eleven wetland communities identified during the site investigations on and within 120 m of the Project location, many of which were previously unidentified during the records review stage. These communities are identified within Table 4.1. Wetland vegetation type, attributes and composition descriptions are identified within Table 4.2.

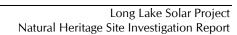
Wildlife habitat functions of the various wetland communities are addressed in Section 4.2, where applicable. Other functions that the wetland may provide include the following:

- Primary production Primary productions describes the relationship whereby plants absorb
 sunlight to create energy; this is often the starting point of energy flow through a food chain.
 Wetland communities, particularly those near flowing water sources which constantly provide
 new nutrients to the system, are regarded as having high primary production when compared to
 other ecosystems. As such, the wetland communities around Smith Creek within 120 m of the
 Project location provide primary production functions.
- Watershed protection Wetland communities provide protection of watersheds through

 (i) filtration of surface water inflow thereby improving water quality, (ii) flood control by trapping water flowing into a watercourse, and slowly releasing it, and (iii) protecting the shoreline of the watercourse from erosion by slowing the flow of water along the banks.
- Preservation of biodiversity Wetland communities help preserve biodiversity by providing habitat for wetland obligate species of flora and fauna.
- Fish habitat open water communities within the wetland provide habitat for fish communities.
- Support of natural cycles wetland communities provide an important component of support for carbon, nitrogen and water.

Table 4.1 Wetland Communities

Wetland ID	Description of Community	Identified During Records Review?	Corrections to Records Review, and Rationale for Correction
WET-001	See Figure 1 in Appendix B for wetland vegetation communities within wetland. Table 4.2 provides further description of the vegetation communities.	No No	This wetland community is located more than 120 m from the Project location and was therefore not identified through the Records Review.
WET-002	See Figure 1 in Appendix B for wetland vegetation communities within wetland. Table 4.2 provides further description of the vegetation communities.	Yes (portions of the wetland)	Portions of this wetland community were identified during the Records Review, however several other wetland communities that are part of this wetland were not identified in the Records Review.
WET-003	See Figure 1 in Appendix B for wetland vegetation communities within wetland. Table 4.2 provides further description of the vegetation communities.	No	This wetland community is located more than 120 m from the Project location and was therefore not identified through the Records Review.
WET-004	See Figure 1 in Appendix B for wetland vegetation communities within wetland. Table 4.2 provides further description of the vegetation communities.	No	This wetland community was not previously identified, and therefore this represents a correction to the Records Review.
WET-005	See Figure 1 in Appendix B for wetland vegetation communities within wetland. Table 4.2 provides further description of the vegetation communities.	No	This wetland community was not previously identified, and therefore this represents a correction to the Records Review.
WET-006	See Figure 1 in Appendix B for wetland vegetation communities within wetland. Table 4.2 provides further description of the vegetation communities.	No	This wetland community was not previously identified, and therefore this represents a correction to the Records Review.
WET-007	See Figure 1 in Appendix B for wetland vegetation communities within wetland. Table 4.2 provides further description of the vegetation communities.	No	This wetland community was not previously identified, and therefore this represents a correction to the Records Review.
WET-008	See Figure 1 in Appendix B for wetland vegetation communities within wetland. Table 4.2 provides further description of the vegetation communities.	No	This wetland community was not previously identified, and therefore this represents a correction to the Records Review.



Wetland ID	Description of Community	Identified During Records Review?	Corrections to Records Review, and Rationale for Correction
WET-009	See Figure 1 in Appendix B for wetland vegetation communities within wetland. Table 4.2 provides further description of the vegetation communities.	No	This wetland community is located more than 120 m from the Project location and was therefore not identified through the Records Review.
WET-010	See Figure 1 in Appendix B for wetland vegetation communities within wetland. Table 4.2 provides further description of the vegetation communities.	No	This wetland community was not previously identified, and therefore this represents a correction to the Records Review.
WET-011	See Figure 1 in Appendix B for wetland vegetation communities within wetland. Table 4.2 provides further description of the vegetation communities.	No	This wetland community was not previously identified, and therefore this represents a correction to the Records Review.

Table 4.2 Wetland Vegetation Type Descriptions

Wetland ID	Description of Community	Identified	Corrections to Records
	(see Appendix II of Appendix B for	During Records	Review, and
	further community description)	Review?	Rationale for Correction
tsS _{1,2}	Tall shrub swamp, dominated by speckled alder.	No	This wetland community was not previously identified, and therefore this represents a correction to the Records Review.
CS3,4,5,26, 27,31	Coniferous swamp, dominated by black spruce and tamarack.	No	This wetland community was not previously identified, and therefore this represents a correction to the Records Review
hS6-17, 34,36,38,39, 45,50,53,54	Deciduous swamp, dominated by trembling aspen and balsam poplar.	No	This wetland community was not previously identified, and therefore this represents a correction to the Records Review.
CS ₁₈₋₂₀	Black spruce coniferous swamp	No	This wetland community was not previously identified, and therefore this represents a correction to the Records Review.
gcM _{21,29,42}	Graminoid marsh, featuring field horsetail, marsh marigold, bird's foot trefoil, tufted vetch, red clover, spotted forget-me-not and meadowrue.	No	This wetland community was not previously identified, and therefore this represents a correction to the Records Review.

Wetland ID	Description of Community (see Appendix II of Appendix B for further community description)	Identified During Records Review?	Corrections to Records Review, and Rationale for Correction
tsM22, 23	Tall shrub march, with speckled alder and willow the predominant tall shrub species.	No	This wetland community was not previously identified, and therefore this represents a correction to the Records Review.
h\$24,25,29,30,32, 35,37,43,44,46,47- 49,52,55	Deciduous swamp, predominated by trembling aspen, balsam poplar and tamarack.	No	This wetland community was not previously identified, and therefore this represents a correction to the Records Review.
ts\$30,41	Tall shrub swamp, dominated by speckled alder and willow.	No	This wetland community was not previously identified, and therefore this represents a correction to the Records Review.
IsB ₂₈	Low shrub bog, with Labrador tea, sheep sorrel, bog laurel and low sweet blueberry identified in the low shrub layer.	No	This wetland community was not previously identified, and therefore this represents a correction to the Records Review.

4.2 Wildlife Habitat

The Significant Wildlife Habitat Technical Guide (SWHTG) (MNR, 2000) identifies four main types of wildlife habitat that can be classified as significant:

- habitat for seasonal concentrations of animals
- rare or specialized habitats for wildlife
- habitat for species of conservation concern
- wildlife movement corridors.

Many of these wildlife habitats relate to the vegetation communities found in the area. Wetland vegetation communities have been previously described within Section 4.1. The only upland vegetation community identified on or within 120 m of the Project location was agricultural lands consisting of pasturelands/hayfields, or recently ploughed lands (for archaeological surveys (see Appendix B for methodology and results of upland vegetation community assessments).

Each of these types of wildlife habitat is considered further below and how they were considered during the site investigation is described.

4.2.1 Habitats of Seasonal Concentrations of Animals

There are many different kinds of seasonal concentration areas identified within the SWHTG. Of these several were not considered during the site investigation, and are provided below:

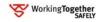
- Shorebird/Landbird migratory stopover areas Shorebird migratory stopover areas are found
 along the shorelines of the Great Lakes and James Bay, while landbird stopover areas are found
 along the shorelines of the Great Lakes and contain a variety of habitat types from open fields to
 large woodlands. As the Project location is located more than 120 m away from these areas, this
 habitat type cannot occur on the Project location.
- Wild Turkey winter range The Project is located more than 120 m from the range of Wild Turkey within the province.
- Migratory butterfly stopover areas These habitats are found within 5 km of the Great Lakes; as
 the Project area is located outside of this zone, such habitat features are not found.
- Bullfrog concentration areas The Project is located more than 120 m from the range of Bullfrogs within the province.
- Turtle over-wintering areas The Project is located more than 120 m north from the range of turtles within the province.
- Raptor wintering areas As the majority of raptor species that forage in open country winter in
 areas well south of the Project location, this habitat type is determined to have no potential for
 occurrence on or within 120 m of the Project location.

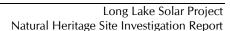
Those that were considered during the site investigations, and the discussion of their potential occurrence on the Project location, are discussed below:

- Winter deer yards/Moose late winter habitat Winter deer yards/moose late winter habitat are sheltered areas where these species congregate during the winter months. As these species are not adept at moving through deep snow, a key component of these habitats is a core area predominantly composed of coniferous trees with a 60% canopy cover. Habitat of this type was considered during the site investigation in relation to the wooded areas present on and within 120 m of the Project location. Though there is an abundance of browse within the area, these areas of mature coniferous forest capable of supporting these features are small and isolated on the Project location, and therefore do not meet the habitat requirements for candidate significant winter deer yards or moose late winter habitat.
- Colonial bird nesting sites Colonial bird nesting sites are locations where colonial species, such as herons, gulls, terns, and swallows traditionally nest in colonies of varying size. No heronries were observed during area searches of lands on and within 120 m of the Project location. No colonial nesting species, such as terns or herons, were observed during surveys of the wetland communities in suitable times of year for detection. No suitable gull or tern colony locations (islands or peninsulas) were noted on or within 120 m during area searches along the waterbodies. Potential swallow colonial breeding locations such as eroding banks, sandy hills, pits, steep slopes, rock faces or piles were not recorded during area searches on or within 120 m of the Project location.
- Waterfowl stopover and staging areas Waterfowl traditionally congregate in larger wetlands and clusters of small wetlands located close to one another during spring and fall migration. As was noted during the Records Review, waterfowl staging areas are identified in association with Syndicate and Kennedy lakes more than 120 m from the Project location. Based on the Records

Review, it was noted that waterfowl may also use the watercourses and wetlands which feed these waterbodies. This was considered during the site investigation, however characteristics of these features were determined to not support candidate significant stopover and staging areas (i.e., watercourses were generally considered too narrow to support an abundance of waterfowl during the migration period with larger watercourse/wetland complexes in the immediate vicinity.

- Waterfowl nesting Waterfowl nesting sites can consist of relatively large, undisturbed upland areas with abundant ponds and wetlands, while other species nest within tree cavities in swamps or on the shorelines of waterbodies. Suitable candidate habitat was identified in association with the areas of upland agricultural habitat (i.e. hayfields) in proximity to the watercourses. The boundary of the waterfowl nesting habitat includes the wetlands along Smith Creek (previously described within Section 4.1), and the hayfields within 120 m of the wetland boundaries. The function of this habitat is to provide nesting and foraging for waterfowl. Therefore candidate significant waterfowl nesting habitat is found on and within 120 m of the Project location.
- Turkey Vulture summer roosting areas The Project location is at the extreme northern end of
 the Turkey Vulture breeding range. No rocky cliff ledges or large dead snags with white-washing
 indicative of Turkey Vulture summer roosting areas were identified during the site investigations.
 Further, no Turkey Vultures were recorded during the site visits. Therefore, suitable habitat was
 not identified on the Project location.
- Reptile hibernacula Reptile hibernacula are commonly found in animal burrows and rock
 crevices. No candidate reptile hibernacula features, or snakes, were identified during transects
 of the Project location during the spring emergence period, which indicates that these features
 are not found on or within 120 m of the Project location.
- Bat hibernacula Bat hibernacula are found in caves, abandoned mines, areas with karst topography and deep rock crevices. These features were not identified during the site investigation. Further, there are no records of abandoned mines from on or within 120 m of the Project location.


Therefore, of the seasonal concentration areas considered during the site investigation, only waterfowl nesting habitat will be carried forward to the evaluation of significance.


4.2.2 Rare Vegetation Communities or Specialized Habitat for Wildlife

Rare vegetation communities include alvars, tall-grass prairies, savannahs, rare forest types, talus slopes, rock barrens, sand barrens and Great Lakes dunes. Vegetation communities observed during the site investigations are shown in Figure 1.1; none of these communities are considered to be rare vegetation communities.

Specialized wildlife habitats include

- areas that support species that have highly specific habitat requirements
- areas with high species and community diversity
- areas that provide habitat that greatly enhances species survival.

There are many habitat types that may meet these definitions; those that were considered during the site investigations as they had the potential to be present in the area, and the discussion of their potential occurrence on the Project location, are addressed below:

- Habitat for area-sensitive species Suitable habitat for area-sensitive species was identified in respect of woodland habitats, grassland habitats, and shrubland habitats. Woodland and shrubland habitats found on and within 120 m of the Project location are associated with swamp and thicket swamp communities, respectively. These communities have been previously described within Section 4.1, and their boundaries are shown on Figure 1.1. Grassland habitats are restricted to the locations of hayfields found on and within 120 m of the Project location. Both of these habitat types extend more than 120 m from the Project location. Functions of these habitats are to provide interior breeding habitat for species sensitive to habitat edges, or to provide breeding habitat for species requiring large areas to support breeding activities. Therefore, habitats for these species will be considered during the evaluation of significance.
- Moose calving areas/Mineral Licks These sites are identified by the MNR or may be known to local landowners. Neither moose calving areas nor mineral licks were identified by the MNR during the Records Review, and consultation with the public on the Project has not identified any such features on or within 120 m of the Project location.
- Moose aquatic feeding areas Moose aquatic feeding areas consist of areas with abundant coverage of aquatic plants and adjacent woodland stands. Such habitat is found within the area around Syndicate Lake, however these habitats are located more than 120 m from the Project location.
- Old-growth or mature forest stands These communities are associated with upland forest areas. No upland forests were noted on or within 120 m of the Project location.
- Forest providing a high diversity of habitats A the woodland communities on and within 120 m of the Project location essentially consist of two vegetation types (coniferous and deciduous), of which there are no upland areas, this habitat does not meet the definition of a candidate forest providing a high diversity of habitats.
- Foraging areas with abundant mast Though active bear presence (scat) was observed within 120 m of the Project location this is likely due to a bear baiting station located on the adjacent property. Bear activity within this region is common and no mast producing trees were observed on the Project location. In addition, no large patches of berry-producing shrubs, or Mountain Ash, Apple or Black Cherry trees were recorded. As a result, this specialized habitat is not found on or within 120 m of the Project location.
- Woodlands supporting amphibian-breeding ponds Amphibian-breeding ponds were not found
 within the woodlands located on or within 120 m of the Project location during the site
 investigation.
- Wetlands supporting amphibian breeding habitat Wetland communities containing open water
 were identified during the site investigations. Therefore, this meets the habitat requirement for
 wetlands supporting amphibian breeding habitat. The attributes of the habitat are marshland
 surrounding Smith Creek. Boundaries were determined to be the boundaries of the riparian

wetland communities along Smith Creek found within 120 m of the Project location. This feature would extend more than 120 m from the Project location. This habitat type would provide amphibian breeding functions (i.e., habitat for breeding, egg-deposition, and larval growth). Composition of the wetland community in this area is described as tall shrub and graminoid marshland.

- Turtle nesting habitat The Project is located north of the range of turtle occurrence within the Province, and therefore there is no potential for this habitat type to occur.
- Mink, Otter, Marten, and Fisher denning sites Denning sites for these members of the weasel family were not recorded on or within 120 m of the Project location during site investigations. Further, MNR has not identified feeding and denning sites for these species during the records review stage. Similarly, there are no undisturbed shorelines or wetlands, given the active pasture in the area, or closed-canopy forests with larger older trees, on or within 120 m of the Project location. Therefore, this habitat type is not found on or within 120 m of the Project location.
- Specialized raptor-nesting habitat A stick nest was observed during the site investigation (see Figure 1.1), though no raptor activity was noted at the nest. There was evidence of animal hair on the nest during Site Investigation 2, which had disappeared by the time of Site Investigation 3 (later that day), which suggests the nest is an active nest location. Based on the characteristics of the nest, it was determined to be a nest of a Red-tailed Hawk. Areas within 200 m of the nest are also considered to be part of this habitat type as these areas provide important foraging habitat. The function of this feature is to provide nesting and foraging opportunities for raptors. This feature is therefore considered to be candidate significant wildlife habitat, and lands on and within 200 m of the nest are carried forward to the evaluation of significance.
- Highly diverse areas Highly diverse areas are commonly associated with the deciduous forest region of Ontario, the Frontenac Axis, and portions of the Canadian Shield underlain by carbonate bedrock (MNR 2000). These features are not found on or within 120 m of the Project location, and therefore this habitat type does not occur in this area.
- Cliffs and caves These features were not identified on or within 120 m of the Project location during the site investigations.
- Seeps and springs These features were not identified on or within 120 m of the Project location during the site investigations.

As a result, habitat for area-sensitive species, wetlands supporting amphibian breeding habitat and specialized raptor nesting habitat, is found on and within 120 m of the Project location.

4.2.3 Habitat of Species of Conservation Concern

Species of conservation concern that were considered during the site investigation include the following:

- Mammals
 - Northern Long-eared Bat There were no mines or caves identified during the site investigation. Further, there were no hollow trees identified, or trees with loose bark that

may serve as maternity colonies. Therefore, suitable habitat was not identified on or within 120 m of the Project location.

 Rock Vole – Suitable rocky areas capable of providing habitat were not identified on or within 120 m of the Project location.

Birds

- Bald Eagle Neither Bald Eagles, nor stick nests were observed during 30-minute surveys at Kennedy and Syndicate lakes more than 120 m from the Project location. Therefore, there does not appear to be active Bald Eagle nesting occurring near either of these waterbodies, and thus there is no candidate significant Bald Eagle habitat present on or within 120 m of the Project location.
- Short-eared Owl At the time of the site investigations in 2011, all fields on the Project location were ploughed and therefore there was no suitable habitat on the Project location. However, suitable habitat may found within the agricultural hayfields within 120 m of the Project location. The function of this habitat would be to provide nesting and foraging opportunities.
- Canada Warbler Suitable habitat for Canada Warbler is found within the swamp communities on and within 120 m of the southern portion of the Project location. Attributes and composition of these communities have been previously described within Section 4.1.
 The function of this habitat would be to provide nesting and foraging opportunities for Canada Warbler.
- Olive-Sided Flycatchers Suitable habitat for Olive-sided Flycatchers is found within the edge habitats associated with the treed areas on and within 120 m of the southern extent of the Project location, as well as along the riparian habitats west of the Project location. Edges typically represent transitional habitats form the agricultural fields or riparian corridors to the woodlands, and are often dominated by shrubs and immature trees. Functions of these habitats would be to provide breeding opportunities within the woodlands while permitting exposed perches from which the flycatchers would sally forth to forage for insects.
- Common Nighthawk Suitable habitat for Common Nighthawk is found within the agricultural lands on and within 120 m of the Project location. In 2011, these habitats existed as ploughed fields, which would provide suitable habitat for Common Nighthawk. Functions of this habitat would be to provide nesting opportunities. Common Nighthawk are an aerial forager and they would be expected to forage over the wetlands and agricultural fields in the vicinity of the nest sites.

Vegetation

Vegetation species are addressed within Table 4.3 below. Functions of these habitats, were present, would be to provide suitable growing conditions for the respective vegetation species of conservation concern. Attributes and compositions of the various habitats discussed below have been previously addressed within Section 4.1.

 Table 4.3
 Vegetation Species of Conservation Concern

Scientific Name	Common Name	Habitat	Habitat Occurrence on Project Location
Moehringia	Large-leaved	rocky ledges, open rocky	Suitable habitat is not found on
macrophylla	Sandwort	woodlands and talus slopes	or within 120 m of the Project location
Carex haydenii	Long-scaled Tussock Sedge	open and shaded wet habitats	Suitable habitat is found within the riparian corridor associated with Smith Creek.
Carex Ioliacea	Sedge	bogs, muskegs and black spruce forests	Suitable habitat is found within the black spruce swamps on and within 120 m of the Project location.
Carex tetanica	Common Stiff Sedge	moist grassland, sandy shores and ditches, prairies, seepages	Suitable habitat is not found on or within 120 m of the Project location
Carex wiegandii	Wiegand's Sedge	black spruce bogs and alder swamps	Suitable habitat is found within the alder swamps present on and within 120 m of the Project location.
Scirpus clintonii	Clinton's Bulrush	prairie and open woods in south; shorelines, rock crevices in north	Suitable habitat is not found on or within 120 m of the Project location
Scirpus heterochaetus	Slender Bulrush	marshes and shores	Suitable habitat is found within the riparian corridor associated with Smith Creek.
Gymnocarpium robertianum	Limestone Oak Fern	ledges and slopes in calcareous rock; occasionally in sphagnum mats in cedar swamps	Suitable habitat is not found on or within 120 m of the Project location
Woodsia alpina	Northern Woodsia	moist, cool, often shaded crevices in calcareous cliffs	Suitable habitat is not found on or within 120 m of the Project location
Woodsia glabella	Smooth Woodsia	shaded, calcareous rock crevices	Suitable habitat is not found on or within 120 m of the Project location
Vaccinium membranaceum	Mountain Bilberry	moist, mature white birch, balsam fir, white cedar forests on shallow, acid soils	Suitable habitat is not found on or within 120 m of the Project location
Vaccinium ovalifolium	Blue Bilberry	mixed woods	Suitable habitat is not found on or within 120 m of the Project location
Oxytropis viscida var. hudsonica	Locoweed	beach ridges and floodplains	Suitable habitat is not found on or within 120 m of the Project location
Diphasiastrum sabinifolium	Ground-fir	sandy woods and meadows	Suitable habitat is not found on or within 120 m of the Project location
Listera auriculata	Auricled Twayblade	moist, shaded sandy soil	Suitable habitat is not found on or within 120 m of the Project location
Malaxis paludosa	Bog Adder's-mouth	sphagnum bogs and muskegs	Suitable habitat is not found on or within 120 m of the Project location

Long Lake Solar Project Natural Heritage Site Investigation Report

Scientific Name	Common Name	Habitat	Habitat Occurrence on Project
			Location
Panicum leibergii var. baldwinii	Baldwin's Panic Grass	dry to mesic prairies, sandy fields and sandy or rocky openings in oak forest; open, rocky riverbanks in northern Ontario	Suitable habitat is not found on or within 120 m of the Project location

Based on the results of the site investigation, there is candidate habitat for Short-eared Owl, Canada Warbler, Olive-sided Flycatcher, Common Nighthawk, Carex haydenii, Carex loliacea, Carex wiegandii, and Scirpus heterochaetus found on and within 120 m of the Project location.

4.2.4 Animal Movement Corridors

The SWHTG (MNR, 2000) defines animal movement corridors as "elongated, naturally vegetated parts of the landscape used by animals to move from one habitat to another". Animal movement corridors were considered during the site investigation. Candidate animal movement corridors were only identified in association with Smith Creek, and associated riparian habitat, connecting Syndicate Lake to other waterbodies north of the Project location. Given the disturbed nature of much of the landscape surrounding Smith Creek in association with the agricultural activities, the movement corridor is restricted to the boundaries of the naturally vegetated areas. Attributes and composition of these naturally vegetated areas have been previously described within Section 4.1. This habitat would provide corridor functions for species of waterfowl, amphibians, and mammals as they move between the larger waterbodies, but likely also provides breeding/foraging habitat for several of these species.

Given that the woodland communities on and within 120 m of the Project location are part of a very large forest community that would provide for diffuse wildlife movement, there are no candidate animal movement corridors identified in association with this feature.

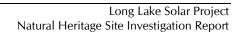
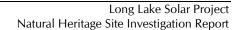

4.2.5 *Summary*

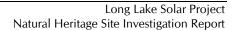
Table 4.2 summarizes the candidate significant wildlife habitats identified during the site investigations.

Table 4.4 Candidate Significant Wildlife Habitats

Feature Type	Description of Community	Identified During Records Review?	Corrections to Records Review, and Rationale for Correction
Habitat for Area-Sensitive Species	Associated with various vegetation communities on and within 120 m of the Project location	No	As this feature was not identified during the records review, the identification of this candidate significant habitat type is considered to be a correction to the Records Review.
Waterfowl Nesting Habitat	Associated with the creek and associated wetlands and nearby upland areas in the western	No	As this feature was not identified during the records review, the identification of



Feature Type	Description of Community	Identified During Records Review?	Corrections to Records Review, and Rationale for Correction
	portion of the Property		this candidate significant habitat type is considered to be a correction to the Records Review.
Wetland supporting amphibian breeding habitat	Associated with the wetland communities on and within 120 m of the Project location, specifically gCM ₂₁	No	As this feature was not identified during the records review, the identification of this candidate significant habitat type is considered to be a correction to the Records Review.
Specialized Raptor Nesting Habitat	A red-tailed hawk nest was identified during the site investigations	No	As this feature was not identified during the records review, the identification of this candidate significant habitat type is considered to be a correction to the Records Review.
Habitat for Short-eared Owl, a Species of Conservation Concern	Associated with the agricultural lands within 120 m of the Project location.	Yes (potential for occurrence)	The locations of the habitat represent a correction to the Records Review.
Habitat for Canada Warbler, a Species of Conservation Concern	Associated with the swamp communities on and within 120 m of the southern portion of the Project location.	Yes (potential for occurrence)	The locations of the habitat represent a correction to the Records Review.
Habitat for Olive-sided Flycatcher, a Species of Conservation Concern	Associated with the edge habitats on and within 120 m of the Project location.	Yes (potential for occurrence)	The locations of the habitat represent a correction to the Records Review.
Habitat for Common Nighhawk, a Species of Conservation Concern	Associated with the agricultural lands on and within 120 m of the Project location.	Yes (potential for occurrence)	The locations of the habitat represent a correction to the Records Review.
Habitat for Carex wiegandii, a Species of Conservation	Suitable habitat is found within the alder swamps present on and within 120 m of the Project location.	Yes (potential for occurrence)	The locations of the habitat represent a correction to the Records Review.


Feature Type	Description of Community	Identified During Records Review?	Corrections to Records Review, and Rationale for Correction
Concern			
Habitat for Carex haydenii, a Species of Conservation Concern	Suitable habitat is found within the riparian corridor associated with Smith Creek.	Yes (potential for occurrence)	The locations of the habitat represent a correction to the Records Review.
Habitat for Carex Ioliacea, a Species of Conservation Concern	Suitable habitat is found within the black spruce swamps on and within 120 m of the Project location.	Yes (potential for occurrence)	The locations of the habitat represent a correction to the Records Review.
Habitat for Scirpus heterochaetus, a Species of Conservation Concern	Suitable habitat is found within the riparian corridor associated with Smith Creek.	Yes (potential for occurrence)	The locations of the habitat represent a correction to the Records Review.
Animal Movement Corridor	Associated with Smith Creek and associated riparian habitat which crosses the western edge of the Property between Syndicate Lake and waterbodies farther north.	No.	As this feature was not identified during the records review, the identification of this candidate significant habitat type is considered to be a correction to the Records Review.

5. Conclusions

Based on the results of the site investigation identified above, several corrections to the records review were identified, as described in Tables 4.1 and 4.2. There are several features present on and within 120 m of the Project location that will require an Evaluation of Significance:

- habitat for area-sensitive species
- waterfowl nesting habitat
- animal movement corridor
- wetlands supporting amphibian breeding habitat
- specialized raptor nesting habitat
- habitat for species of conservation concern
- wetlands located within 120 m of the Project location.

6. References

Hatch Ltd. 2011. Long Lake Solar Project – Natural Heritage Records Review Report. Prepared for Northland Power Inc. on behalf of Northland Power Solar Long Lake L.P.

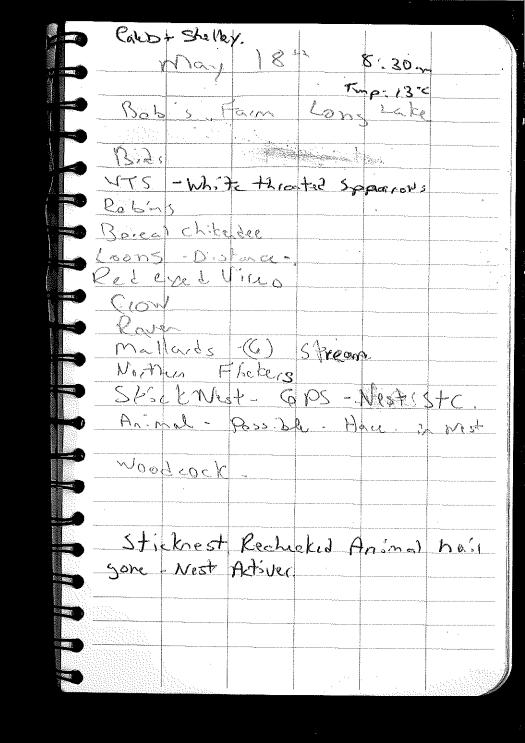
McKenney, D., M. Oldham, J. Bogart, and B. Mackey. 2007. Amphibians and Reptiles of Ontario. Natural Resources Canada. Available on-line at http://cfs.nrcan.gc.ca/subsite/glfc-amphibians. Accessed February 17, 2010; Last Updated November 30, 2007.

Ministry of Natural Resources (MNR). 2010. Ontario Biodiversity Explorer. Available on-line at https://www.biodiversityexplorer.mnr.gov.on.ca/nhicWEB/mainSubmit.do.

MNR. 2009. Significant Wildlife Habitat Ecoregion Criteria Schedules – Addendum to Significant Wildlife Habitat Technical Guide. Working Draft – January 2009. 70 pp.

MNR. 2000. Significant Wildlife Habitat Technical Guide. Fish and Wildlife Branch, Wildlife Section and Science Development and Transfer Branch, Southcentral Sciences Section.

Ontario Partners in Flight. 2005. Ontario Landbird Conservation Plan: Lower Great Lakes/St. Lawrence Plain (North American Bird Conservation Region 13), *Priorities, Objectives and Recommended Actions*. Environment Canada/Ministry of Natural Resources.



Appendix A

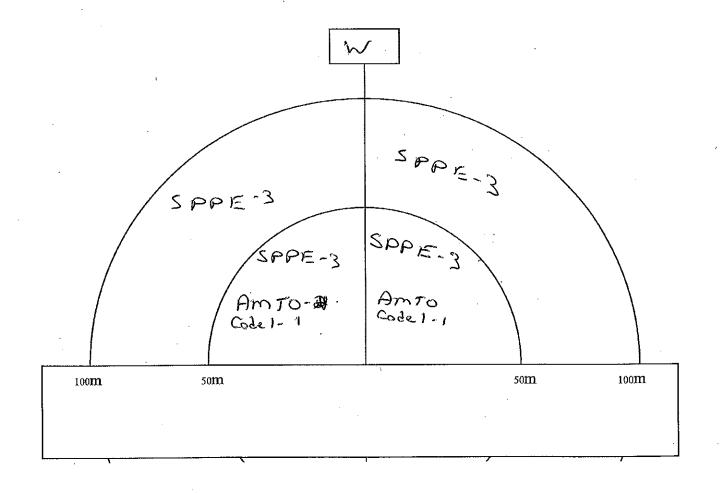
Site Investigation Field Notes

No..... No..... Date Page 5.4 Date: Aug 24,2010 5950-1330 Time Teme Strong wood black bear seat

No..... Date......Page..... Date Page 56 red-ones down Balsa Poplar may GR Loundain I weed for oat Turn or nett allon wantah Frenil 6 La SPVHCE SAPI. nountain maple Japlings ied barebeini Frendla Strawbarry abrin

Litta Browse Lindaher - Waff, Bear, Coyote. Reaver ladges + Donsit ccee Cornsed Waterway Hedgerow Backside - Photo's. Pagest implad and Clear Cut Poplar Regardoplax and Diger Œ Confirmed With Land where Cut 15-20 years ago

15.70

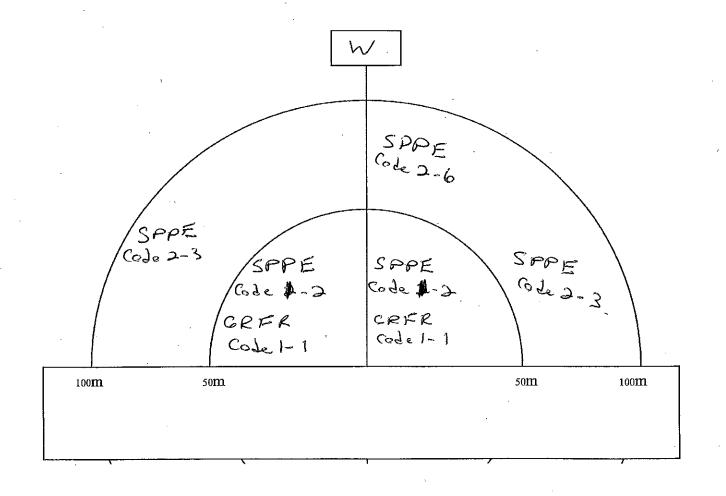

Observer: Cheb + Nor.m Station ID:	Site: Lons Cate -	Start Time (HH:MM): 8 . 14
Beaufort Wind Scale:	Cloud Cover (%):	Finish Time (HH:MM): 8-18
Precipitation:	Visibility: É×	Temperature (°C):
Remarks:		

Aerial Foragers		
Species	IN*	OUT**
AMTO	~	
BCFR		
BULL		
CHFR	,	
FOTO		
GRTR		
GRFR		
MIFR		
NLFR		
PIFR		
SPPE	1	1
WOFR		

	Call Level Codes
CODE 1	Calls not simultaneous, number of individuals can be accurately counted.
CODE 2	Some calls simultaneous, number of individuals can be reliably estimated.
CODE 3	Full chorus, calls continuous and overlapping, number of individuals cannot be reliably estimated

*Check if species is calling from inside 100-meter station area.

**Check if species is calling from outside 100-meter station area.

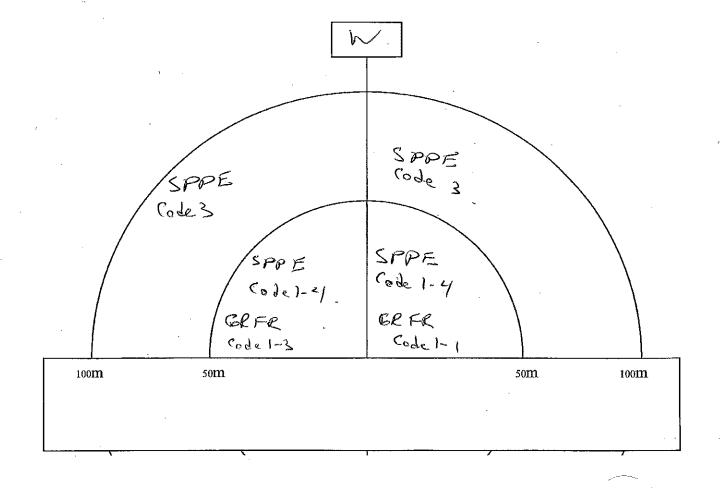


Observer: Call 3	r Noim	Site: 100 Late	Date: May 1877 2011
Station ID:		Visit #:)	Start Time (HH:MM): 8:35
Beaufort Wind Scale:	0	Cloud Cover (%): O	Finish Time (HH:MM):
Precipitation:	0	Visibility:	Temperature (°C):
Remarks:			

Aerial Foragers		
Species	IN*	OUT**
AMTO		
BCFR		
BULL		
CHFR		
FOTO		
GRTR		
GRFR	1_	~
MIFR		
NLFR		
PIFR		
SPPE		i
WOFR		

	Call Level Codes	
CODE 1	Calls not simultaneous, number of individuals can be accurately counted.	
CODE 2 Some calls simultaneous, number of individuals can be reliably estimated.		
CODE 3 Full chorus, calls continuous and overlapping, number of individuals cannot be reliably estimated		

- *Check if species is calling from inside 100-meter station area.
- **Check if species is calling from outside 100-meter station area.

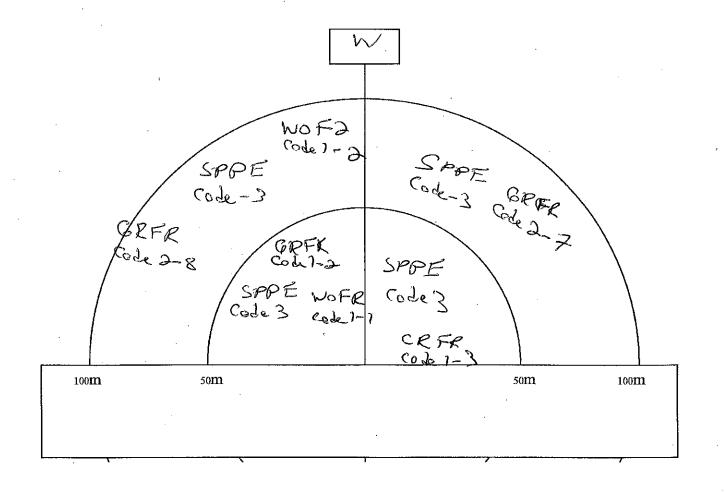

Observer: 1 b + Norm	Site: Lone Zake	Date: May 18 2017
Station ID: 3	Visit #:	Start Time (HH:MM): 8:37
Beaufort Wind Scale:	Cloud Cover (%):	Finish Time (HH:MM): & , 3 4.
Precipitation:	Visibility:	Temperature (°C): 18
Remarks:		-

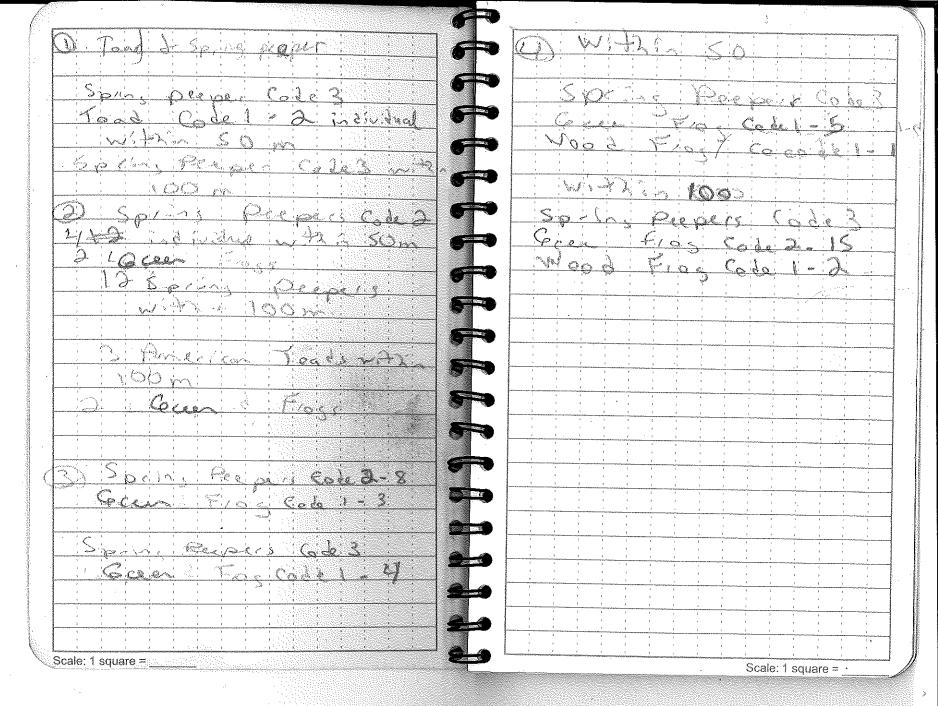
Aerial Foragers		
Species	IN*	OUT**
AMTO		
BCFR		
BULL		
CHFR	,	
FOTO		
GRTR		
GRFR	1	l
MIFR		
NLFR		
PIFR		
SPPE	1_	ー
WOFR		

	Call Level Codes
CODE 1	Calls not simultaneous, number of individuals can be accurately counted.
CODE 2	Some calls simultaneous, number of individuals can be reliably estimated.
CODE 3 Full chorus, calls continuous and overlapping, number of individuals cannot be reliably estimated	

*Check if species is calling from inside 100-meter station area.

**Check if species is calling from outside 100-meter station area.


Site: Long Zake	may 16 20 11
Visit #: 1	Start Time (HH:MM): 8:40
Cloud Cover (%): D	Finish Time (HH:MM): 6 4 3
Visibility:	Temperature (°C):
	: :
	Cloud Cover (%):


Aerial Foragers		
Species	IN*	OUT**
AMTO		
BCFR		
BULL		
CHFR	,	
FOTO		
GRTR		
GRFR	2	~
MIFR		
NLFR		
PIFR		
SPPE	1	
WOFR	~	L

	Call Level Codes
CODE 1	Calls not simultaneous, number of individuals can be accurately counted.
CODE 2	Some calls simultaneous, number of individuals can be reliably estimated.
CODE 3	Full chorus, calls continuous and overlapping, number of individuals cannot be reliably estimated

*Check if species is calling from inside 100-meter station area.

**Check if species is calling from outside 100-meter station area.

Appendix B

Natural Resource Solutions Inc., Summary of Wetland and Upland Vegetation Mapping, Breeding/Evening Bird and Amphibian Call Surveys

1247A

February 1, 2012

Mr. Sean Male Hatch Energy 4342 Queen Street, Suite 500 Niagara Falls, ON L2E 7J7

Dear Mr. Male,

RE: Long Lake Solar Project
Summary of Wetland & Upland Vegetation Mapping,
Breeding/Evening Bird, Eagle and Amphibian Call Surveys

Summary of Surveys

On behalf of Natural Resource Solutions Inc., I am pleased to provide the following which documents the work completed at the above noted solar project being proposed by Northland Power.

The objectives of this assignment were to complete vegetation mapping, amphibian surveys, breeding bird and evening bird surveys.

Appendix I includes a list of study team members and their roles.

Vegetation

On site vegetation mapping occurred on June 23, 2011 (0530 - 1230hrs, weather 16℃, 100% cloud cover, wind - Beaufort scale 1 to 2). The standard Ontario Wetland Evaluation System (OWES) (OMNR 1993) was used by a Certified Wetland Evaluator to map and describe on-site wetlands as well as wetlands within 120m of the project site.

Upland vegetation on the subject property and within 120m was described using the Forest Ecosystem Classification system (Taylor *et al.* 2000). Since this system focuses on woodland habitats, the standard Ecological Land Classification (ELC) System for Southern Ontario (Lee *et al.* 1998; Lee 2008) was used to classify meadow, thicket and other habitats not covered by the FEC.

In addition, a catchment basin boundary was identified that included the on-site wetlands and extended for several kilometers to the north, west and east. The limits of the proposed catchment basin were provided to the OMNR for review and comment. All wetlands in the catchment basin were also mapped and described using OWES June 21 to June 24, 2011. In this case, land access and the extent of the lands required that the mapping be completed using aerial photography supplemented with field checks of wetland polygons at strategic locations (primarily roadside).

Please see Appendix II for a list of polygon labels. A map of the vegetation communities within the wetland complex is included with the wetland evaluation, Appendix III.

The wetlands within the catchment basin were evaluated using the standard OWES system for northern Ontario. A copy of the completed evaluation, including mapping, is included in Appendix III.

Amphibian Call Monitoring

On site amphibian call surveys were completed on June 24, 2011 (2200 - 2400hrs, weather 15°C, light rain, 100% cloud cover, wind - Beaufort scale 5, water temperature 18°C). The standard Marsh Monitoring Protocol (Bird Studies Canada 2009) was used in which a team of two biologists conducted 3 minute point counts at predetermined stations (monitored previously by staff of Hatch). The locations of these stations are shown on the vegetation map in Appendix II.

No standing water was present at Station 1, and no amphibians were heard. No standing water was present at Station 2 either, but northern spring peepers (*Pseudacris crucifer crucifer*) were heard calling north of the station (approximately 150m). No amphibians were heard during surveys at Station 3, but mink frogs (*Rana septentrionalis*) were heard during vegetation surveys. Nothing was heard at Station 4.

The field data forms are included in Appendix IV.

Green Frog (Rana clamitans melanota) was also heard during the on-site breeding bird surveys.

Breeding Bird Surveys

On site breeding bird surveys were completed on June 23, 2011 (0530 - 0900hrs, weather 16°C, 100% cloud cover, wind - Beaufort sca le 1 to 2) using the standard Ontario Breeding Bird methodology (Cadman *et al.* 2007). In this case an area search technique as described in OMNR (2010) was used to cover the entire property.

The field data forms are included in Appendix IV.

The following species were observed during that period:

Species Observed	Observed	Possible	Probable	Confirmed
Canada Goose (Branta canadensis)		S		
Mallard (Anas platyrhynchos)		Р		
Common Loon (Gavia immer)		S		
Northern Harrier (Circus cyaneus)	Χ			
American Kestrel (Falco sparverius)		Н		
Sandhill Crane (Grus canadensis)			Р	
Wilson's Snipe (Gallingo delicate)			Р	
Northern Flicker (Colaptes auratus)				DD
Alder Flycatcher (Empidonax alnorum)		S		
Blue-headed Vireo (Vireo solitarius)		S		

Species Observed	Observed	Possible	Probable	Confirmed
American Crow (Corvus brachyrhynchos)		S		
Barn Swallow (Hirundo rustica)		Н		
Veery (Catharus fuscescens)		S		
Hermit Thrush (Catharus guttatus)		S		
American Robin (Turdus migratorius)			Р	
European Starling (Sturnus vulgaris)		Н		
Tennessee Warbler (Vermivora peregrine)		S		
Nashville Warbler (Vermivora ruficapilla)		S		
Yellow Warbler (Dendroica petechia)		S		
Yellow-rumped Warbler (Dendroica coronata)		S		
Black-and-white Warbler (Mniotilta varia)		S		
Ovenbird (Seiurus aurocapillus)		S		
Connecticut Warbler (Oporornis agilis)		S		
Mourning Warbler (Oporornis philadelphia)		S		
Common Yellowthroat (Geothlypis trichas)		S		
Chipping Sparrow (Spizella passerine)		S		
Vesper Sparrow (Pooecetes gramineus)		S		
Song Sparrow (Melospiza melodia)		S		
White-throated Sparrow (Zonotrichia albicollis)		S		
American Goldfinch (Carduelis tristis)		S		

Observed

X Species observed in its breeding season with no evidence of breeding

ossible

H Species observed in its breeding season in suitable nesting habitat

S Singing male present of breeding calls heard in breeding season in suitable nesting habitat

Probable
P Pair observed in their breeding season in suitable nesting habitat

- T Permanent territory presumed through registration of territorial song on at least 2 days, one week or more apart at the same place
- D Courtship or display between a male and female or 2 males including courtship feeding and copulation V Visiting probable nest site
- A Agitated behaviour or anxiety calls of an adult
- B Brood patch on adult female or cloacal protuberance on adult male N

Nest building or excavation of nest site

Confirmed

DD Distraction display or injury feigning

NU Used nest or egg shell found (occupied/laid this season) FY

Recently fledged young or downy young

AE Adults leaving or entering nest site in circumstances indicating occupied nest

FS Adult carrying faecal sac

CF Adult carrying food for young

NE Nest containing eggs

NY Nest with young seen or heard

Other species observed on-site included:

Moose (tracks) (Alces alces)

White-tailed Deer (scat) (Odocoileus virginianus)
Snowshoe Hare (Lepus americanus)
Red Fox (Vulpes vulpes)

Evening Bird Surveys

Surveys for birds that are primarily active in the evening were conducted at the project site. The surveys followed standard monitoring protocols developed for species such as whip-poor-will and common nighthawk (the two focus species for this survey) (OMNR 2011).

In addition, neither of these bird species were detected at the 4 stations used for amphibian surveys on June 24, 2011 (2155 - 2232hrs). No evening birds were heard during amphibian call surveys on the same night.

Other species observed during evening bird surveys included:

White-throated Sparrow (Zonotrichia albicollis)

Bald Eagle Surveys

Bald eagle (*Haliaeetus leucocephalus*) surveys were conducted at Kennedy Lake and Syndicate Lake on June 23, 2011 (0920 -1048hrs, weather 16℃, overcast, 100% cloud cover, wind - Beaufort scale 1).

Two (2) point counts were conducted for 30 minute intervals at strategic locations on the shoreline (17U 480155 E 5442058 N for Kennedy Lake and 17U 477799 E 5441502 N for Syndicate Lake). As well, the shorelines were scanned with binoculars for large stick nests.

No bald eagles or stick nests were observed during this survey. No bald eagles were observed during vegetation or wildlife surveys on-site and in the catchment basin area.

Incidental wildlife species observed at Kennedy Lake on June 23, 2011, included:

Common Loon (Gavia immer)
American Kestrel (Falco sparverius)

Red-eyed Vireo (Corvus brachyrhynchosi)
Tree Swallow (Tachycineta bicolor)
American Robin (Turdus migratorius)
White-throated Sparrow (Zonotrichia albicollis)
Red-winged Blackbird (Agelaius phoeniceus)
American Goldfinch (Carduelis tristis)

Northern Spring Peeper (Pseudacris crucifer crucifer)

Mink Frog (Rana septentrionalis)

Beaver (lodge) (Castor canadensis)

Wildlife observed at Syndicate Lake on June 23, 2011, included:

Red-eyed Vireo (Vireo olivaceus)
American Robin (Turdus migratorius)
American Redstart (Setophaga ruticilla)

Common Yellowthroat (Geothlypis trichas)
Chipping Sparrow (Spizella passerina)
Song Sparrow (Melospiza melodia)
White-throated Sparrow (Zonotrichia albicollis)
American Goldfinch (Carduelis tristis)

American Toad (Bufo americanus)
Mink Frog (Rana septentrionalis)

Moose (scat, tracks) (Alces alces)

I trust that this information is adequate. Please contact me if you have any questions.

Yours sincerely, Natural Resource Solutions Inc.

David Stephenson, M.Sc., Senior Biologist

References

- Bird Studies Canada. 2009. Marsh Monitoring Program Participant's Handbook for Surveying Amphibians. 2009 Edition. Published by Bird Studies Canada in Cooperation with Environment Canada and the U.S. Environmental Protection Agency. February 2009.
- Cadman, M.D., D.A. Sutherland, G.G. Beck, D. Lepage and A.R. Couturier. 2007. Atlas of the Breeding Birds of Ontario. Available online at: http://www.birdsontario.org/atlas/index.jsp
- Lee, H.T., W.D. Bakowsky, J. Riley, J. Bowles, M. Puddister, P. Uhlig and S. McMurray. 1998. Ecological Land Classification for Southern Ontario: First Approximation and its Application. Ontario Ministry of Natural Resources, Southcentral Science Section, Science Development and Transfer Branch. SCSS Field Guide FG-02.
- Lee, H. 2008. Southern Ontario Ecological Land Classification Vegetation Type List. Ontario Ministry of Natural Resources: London, Ontario.
- Ontario Ministry of Natural Resources. 1993. Ontario Wetland Evaluation System. Northern Manual. Revised 1994 & 2002)
- Ontario Ministry of Natural Resources. 2010. Birds and bird Habitats Guidelines for Wind Power projects.
- Ontario Ministry of Natural Resources. 2011. Northeast Nightjar Survey Techniques (Draft). Sudbury District MNR
- Taylor, K.C. et al. 2000. A Field Guide to Forest Ecosystems of Northeastern Ontario. 2nd Edition. NEST Field Guide FG-001.

Appendix I Team Members

Team Member	Qualification	Role
David Stephenson	Certified Wetland Evaluator Certified ELC Certified OWES Certified Arborist	Project Management, Reporting
Jessica Grealey	Terrestrial and Wetland Biologist Certified ELC	Site Assessment
Katharina Walton	Terrestrial and Wetland Biologist Certified ELC	Reporting
Megan Pope	Terrestrial and Wetland Biologist	Site Assessment, Data Analysis, Reporting
Gerry Schaus	GIS Technician	Mapping

Appendix II Vegetation Codes

Within Project Site and 120m boundary

tsS_{1.2.}:

[OWES: Tall Shrub Swamp]

h: balsam poplar (*Populus balsamifera ssp. balsamifera*), trembling aspen (*Populus tremuloides*)

c: black spruce (Picea mariana), tamarack (Larix laricina)

dc,dh,ds: black spruce (*Picea mariana*), balsam poplar (*Populus balsamifora san balsamifora*), tamaraak (*Larix lariana*)

balsamifera ssp. balsamifera), tamarack (Larix laricina)

*ts: speckled alder (*Alnus incana spp. rugosa*), willows (*Salix sp.*), poplars (*Populus sp.*)

Is: speckled alder (*Alnus incana spp. rugosa*), red raspberry (*Rubus idaeus ssp. idaeus*), willow (Salix sp.), trembling aspen (*Populus tremuloides*), red osier dogwood (*Cornus stolonifera*), Labrador tea (*Ledum groenlandicum*), low sweet blueberry (*Vaccinium angustifolium*) gc: tall buttercup (*Ranunculus acris*), marsh marigold (*Caltha palustris*), strawberry (*Fragaria virginiana*), yellow avens (*Geum aleppicum*), dandelion (*Taraxacum officinale*)

ne: blue joint grass (*Calamagrostis canadensis*), bristly sedge (*Carex comosa*), path rush (*Juncus tenuis*)

re: common cattails (Typha latifolia)

m: moss sp., clubmoss sp.

$cS_{3,4,5,26,27,31}$:

[OWES: Conifer Swamp]

*c: black spruce (*Picea mariana*), tamarack (*Larix laricina*)

ts: speckled alder (Alnus incana spp. rugosa)

ls: Labrador tea (Ledum groenlandicum), speckled alder (Alnus incana

spp. rugosa), creeping snowberry (Gaultheria hispidula)

gc: blue-bead lily (Clintonia borealis), wood horsetail (Equisetum

sylvaticum), bunchberry (Cornus canadensis)

m: peat moss, caribou lichen

hS_{6-17,34,36,38,39,45,50,53,54}:

[OWES: Deciduous Swamp]

*h: trembling aspen (*Populus tremuloides*), balsam poplar (*Populus balsamifera* ssp. balsamifera)

c: black spruce (Picea mariana)

dc,dh,ds: poplars (Populus sp.)

ts: speckled alder (Alnus incana spp. rugosa), mountain ash

ls: red raspberry (*Rubus idaeus ssp. idaeus*), red osier dogwood (*Cornus stolonifera*), alder leaved buckthorn (*Rhamnus alnifolia*), sheep laurel (*Kalmia angustifolia*), Labrador tea (*Ledum groenlandicum*), red currant (*Ribes rubrum*)

gc: wild strawberry (Fragaria virginiana), blue-bead lily (*Clintonia borealis*), bunchberry (*Cornus canadensis*), purple stem aster (*Symphyotrichum puniceum*)

ne: blue joint grass (*Calamagrostis canadensis*), sedge sp., Awl-fruited sedge (*Carex stipata*)

re: dark-green bulrush (Scirpus atrovirens)

m: moss

cS_{18-20} :

[OWES: Coniferous Swamp]

h: trembling aspen (*Populus tremuloides*)

c: black spruce (Picea mariana)

ts: willow (Salix sp.), speckled alder (Alnus incana spp. rugosa)

ls: Labrador tea (*Ledum groenlandicum*), red currant (Ribes rubrum), low sweet blueberry (*Vaccinium angustifolium*)

gc: wood horsetail (Equisetum sylvaticum), bunchberry (Cornus

canadensis) m: peat moss

gcM_{21, 29,42}:

[OWES: Graminoid Marsh]

ts: speckled alder (*Alnus incana spp. rugosa*), balsam poplar (*Populus balsamifera ssp. balsamifera*), willow (Salix sp.)

ls: willow (Salix sp.), red raspberry (*Rubus idaeus ssp. idaeus*), meadowsweet (*Filipendula ulmaria ssp. ulmaria*)

*gc: field horsetàil (*Equisetum arvense*), marsh marigold (*Caltha palustris*), bird's foot trefoil (*Lotus corniculatus*), tuffed vetch (*Vicia cracca*), red clover (*Trifolium pretense*), forget-me-not (Myosotis sp.), meadowrue (Thalictrum sp.)

ne: blue joint grass (*Calamagrostis canadensis*), dark-green bulrush (*Scirpus atrovirens*)

F: yellow pond lily (Nuphar sp.)

tsM_{22,23}:

[OWES: Tall Shrub Marsh]

h: trembling aspen (*Populus tremuloides*), balsam poplar (*Populus balsamifera* ssp. balsamifera)

ts: speckled alder (*Alnus incana spp. rugosa*), willow (Salix sp.)

ls: red raspberry (*Rubus idaeus ssp. idaeus*), meadow-sweet (*Spiraea chamaedryfolia*), willow (Salix sp.)

gc: meadowrue (Thalictrum sp.), yellow avens (*Geum aleppicum*), pale touch-me-not (*Impatiens palidia*), field horsetail (*Equisetum arvense*) ne: blue joint grass (*Calamagrostis canadensis*), fox sedge (*Carex vulpinoidea*)

hS_{24,25,29,30,32,35,37,43,44,46,47-49,52,55}:

[OWES: Deciduous Swamp]

*h: trembling aspen (*Populus tremuloides*), balsam poplar (*Populus balsamifera ssp. balsamifera*), tamarack (*Larix laricina*) c: black spruce (*Picea mariana*), balsam fir (*Abies balsamea*) dc,dh,ds: poplars (Populus sp.), spruce (Picea sp.)

ts: speckled alder (*Alnus incana spp. rugosa*), trembling aspen (*Populus tremuloides*)

ls: alder-leaved buckthorn (*Rhamnus alnifolia*), red currant (*Ribes rubrum*) gc: meadow rue (Thalictrum sp.), bracken fern (*Pteridium aquilinum var. latiusculum*), strawberry (*Fragaria virginiana*), bunchberry (*Cornus canadensis*), lady fern (*Athyrium filix-femina var. angustum*)

ne: sedge sp. m: moss sp. tsS_{30 41}:

[OWES: Tall Shrub Swamp] h: white birch (*Betula papyrifera*)

c: tamarack (Larix laricina), black spruce (Picea mariana)

dc,dh,ds: birch (Betula sp.)

ts: speckled alder (Alnus incana spp. rugosa), willow (Salix sp.)

ls: speckled alder (*Alnus incana spp. rugosa*), willow (Salix sp.), red osier dogwood (*Cornus stolonifera*), Labrador tea (*Ledum groenlandicum*) ne: aquatic sedge (*Carex aquatilis*), blue joint grass (*Calamagrostis*

canadensis)

re: dark-green bulrush (Scirpus atrovirens)

IsB₂₈:

[OWES: Low Shrub Bog]

c: tamarack (Larix laricina), black spruce (Picea mariana)

dc,dh,ds: spruce (Picea sp.)

ts: tamarack (*Larix Iaricina*), black spruce (*Picea mariana*) ls: Labrador tea (*Ledum groenlandicum*), sheep sorrel (*Rumex*

acetosella), bog laurel (Kalmia polifolia), low sweet blueberry (Vaccinium

angustifolium)

gc: Canada mayflower (Maianthemum canadense) m:

peat moss

Outside of Project Site and 120m boundary

tsS_{33.40}:

[OWES: Tall Shrub Swamp]

cS_{26,27,31}:

[OWES: Conifer Swamp]

hS_{34,36,38,39,45,50,53,54}:

[OWES: Deciduous Swamp]

 gcM_{42} :

[OWES: Graminoid Marsh]

 $hS_{24, 29, 30, 32, 35, 37, 43, 44, 46, 47-49, 52, 55}$:

[OWES: Deciduous Swamp]

tsS_{30,41}:

[OWES: Tall Shrub Swamp]

IsB₂₈:

[OWES: Low Shrub Bog]

APPENDIX III Wetland Evaluation

	Lo	ong Lake Wetland Comple	ex			
					1	
<u> </u>	Wetlan	d Evaluation Edition		2012		
		February 1, 2012				
		Comments				
Attached Documents in	clude:					
1) 14	7.1.10.1					
1) Map of Long Lake W		5 ho				
2) Reasons for includin3) List of vegetation con		.5 Ha				
4) Summary of Wetland		dominant form areas				
5) Map of Interspersion		dominant form dreas				
6) List of Research and						
7) Map of Long Lake W	Vetland Complex Catcl	hment Basin				
8) List of Significant Sp	pecies					
9) List of fish species in	n and around Long Lak	xe Wetland Complex				
10) Vascular Plant List						
11) Fauna list						
		A 1 11/4' 1 T C 4'				
		Additional Information				
Official Name:		Long Lake Wet	land Comple	O.V.		
Evaluation Edition:	2012	Class:	Wetland			
Wetland Significance		th Last Evaluated	vv Ctrant		1, 2012	
Provincially Significat		th Last Updated		Teordary	7 1, 2012	
Special Planning Consideration		Last opunion	Г		Scores	
-r som r mining consis		4			Biological:	158
					Social:	95
				H	drological:	215
			-		al Features:	250
			-		Overall:	717
Submitted by:	Natural R	esources Solutions Inc.				
Date:	Fe	ebruary 1, 2012				

	General Directions
Blue she	ided boxes require a numerical response except for those boxes with a zero value.
	oxes have been linked to corresponding values and formulas and should not need any
input.	5xes have been finked to corresponding values and formulas and should not need any
	these boxes only where necessary.
	kes with no zero value require a numerical input according to directions.
Diue 002	tes with no zero value require a numerical input according to directions.
Orange:	shaded boxes are section totals and have been linked to corresponding fields and
formulas	S.
Change	these boxes only where necessary
Orange 1	boxes with no zero value require a numerical value according to directions.
-	
3 Underlin	ned fields without blue or orange shading require either an alpha capital letter "X" or
a writter	explaination as per directions.
4 An exce	ption to the above rules is page #2 "Size and Boundaries", the underlined fields
	numeric values.
Start wit	h the Identification Page as all other pages are linked to information inputted into it's
	he Title page is to be completed last.
meras. 1	ne The page is to be completed has:

	Lo	ong Lake Wetland Comple	ex			
					1	
<u> </u>	Wetlan	d Evaluation Edition		2012		
		February 1, 2012				
		Comments				
Attached Documents in	clude:					
1) 14	7.1.10.1					
1) Map of Long Lake W		5 ho				
2) Reasons for includin3) List of vegetation con		.5 Ha				
4) Summary of Wetland		dominant form areas				
5) Map of Interspersion		dominant form dreas				
6) List of Research and						
7) Map of Long Lake W	Vetland Complex Catcl	hment Basin				
8) List of Significant Sp	pecies					
9) List of fish species in	n and around Long Lak	xe Wetland Complex				
10) Vascular Plant List						
11) Fauna list						
		A 1 11/4' 1 T C 4'				
		Additional Information				
Official Name:		Long Lake Wet	land Comple	O.V.		
Evaluation Edition:	2012	Class:	Wetland			
Wetland Significance		th Last Evaluated	vv Ctrant		1, 2012	
Provincially Significat		th Last Updated		Teordary	7 1, 2012	
Special Planning Consideration		Last opunion	Г		Scores	
-r som r mining consis		4			Biological:	158
					Social:	95
				H	drological:	215
			-		al Features:	250
			-		Overall:	717
Submitted by:	Natural R	esources Solutions Inc.				
Date:	Fe	ebruary 1, 2012				

<u>v</u>	WETLANI			
<u>v</u>	WETLANI			
<u>v</u>		D DATA AND SCORING	RECORD	
_	WETLAND NAME:	Long Lake	Wetland Complex	X
N	MNR ADMINISTRATIVE REGI	ION: Cochrane I	DISTRICT:	Cochrane
	AREA OFFICE (if different from			
	CONSERVATION AUTHORITY			
(]	If not within a designated CA, chec	ck here: X		
	COUNTY OR REGIONAL MUN	ICIPALITY:	Cochr	ane
	TOWNSHIP:	Cocl	hrane	
Ι	LOTS & CONCESSIONS:	Calder Con. 7 Lots 1-	-6, Con. 8 Lots 1-	7, Con. 9 Lots 1-9,
(;	(attach separate sheet if necessary)	Con. 10 Lots 1-9, 0 Lots 26-28, Con. 8 Lots 26		Clute Con. 6 Lots 26
N	Con. 7 MAP AND AIR PHOTO REFERI	· · · · · · · · · · · · · · · · · · ·	0-28, Con. 9 Lots	25-28, Con. 10 Lots
a) l	Latitude: Longi	itude:		
b) 1	UTM grid reference:	Zone: 17	В	lock:
-,		Grid:E 470000	N	
c) 1	National Topographic Series:			
	map name(s)			
	map number(s)	e	edition	
				=
	scale	1:22,00	<u>JU</u>	
d) A	Aerial photographs: Date photo take	en: Google Earth ima	Scale: <u>2004</u> age: July 16, 2004	<u> </u>
F	Flight & plate numbers:			
_				
(a	(attach separate sheet if necessary)			
e) (Ontario Base Map numbers & scale	;		

a) Single contiguous wetland area	n:	hectares	3	
b) Wetland complex comprised o	f <u>11</u>	individu	al wetlands:	
Wetland Unit Number				Size of each
(for reference)				wetland unit
	Isolated	Palustrine	Riverine	Lacustrin
Wetland Unit No. WET-001		94.20		
Wetland Unit No. WET-002		1116.71	203.35	21.60
Wetland Unit No. WET-003		2.25	-	
Wetland Unit No. WET-004		0.60	-	_
Wetland Unit No. WET-003				
Wetland Unit No. WET-006			-	
Wetland Unit No. WET-007				_
Wetland Unit No. WET-008		41.16		20.16
Wetland Unit No. WET-009		41.16		20.16
Wetland Unit No. WET-010		67.62		
Wetland Unit No. WET-011		0.63		_
Wetland Unit No.				_
Wetland Unit No. Wetland Unit No.			-	_
Wetland Unit No.				_
Wetland Unit No.				_
Wetland Unit No.			-	_
Wetland Unit No.				
Wetland Unit No.			-	_
Wetland Unit No.				_
Wetland Unit No.			-	
Wetland Unit No.			-	
Wetland Unit No.			-	
Wetland Unit No.				
Wetland Unit Totals:	0.93	1323.17	203.35	41.76
(Attach additional sheets if nec				
	•			
TOTAL WETLAND SIZ	E	_	1569.21	ha
c) Brief documentation of reason	s for including any	areas less than 0.5	ha in size:	
Small wetlands fall within the p	project area bounda	ry of the solar parl	k. They would	have been conne
each other at one time, but now	have been disturbe	ed by agriculture.	This has also di	isturbed their nat
flow patterns and has isolated v				

(DATE)

1.0 BIOLOGICAL COMPONENT

1.1 PRODUCTIVITY

1.1.1 GROWING DEGREE-DAYS/SOILS

GROWING I	DEGREE DAYS	SOILS	_
(check one)		Estimated	Fractional Area
1)	<1600	0.500	clay/loam
2)	1600-2000		silt/marl
3) X	2000-2400		limestone
4)	2400-2800		sand
5)	2800-3000	0.500	humic/mesic
6)	>3000		fibric
			granite

SCORING:

Growing	Clay-	Silt-	Lime-	Sand	Humic-	Fibric	Granite
Degree-	Loam	Marl	stone		Mesic		
Days							
<1600	12	11	9	7	7	6	4
1600-2000	15	13	11	9	8	7	5
2000-2400	18	15	13	11	9	8	7
2400-2800	22	18	15	13	11	9	7
2800-3000	26	21	18	15	13	10	8
>3000	30	25	20	18	15	12	9

(maximum score 30; if wetland contains more than one soil type,

evaluate based on the fractional area)

Steps required for evaluation: (maximum score 30 points)

- 1. Select GDD line in evaluation table applicable to your wetland;
- 2. Determine fractional area of the wetland for each soil type;
- 3. Multiply fractional area of each soil type by score;
- 4. Sum individual soil type scores (round to nearest whole number).

In wetland complexes the evaluator should aim at determining the percentage of area occupied by the categories for the complex as a whole.

Score		
18	clay/loam	9.00
	silt/marl	0.00
	limestone	0.00
	sand	0.00
9	humic/mesic	4.50
	fibric	0.00
	granite	0.00

Final Score Growing Degree-Days/Soils (maximum 30 points)

Northern Ontario Wetland Evaluation,	Data and Scoring Record	(DATE)
1.1.2 WETLAND TYPE (Fractional Ar	rea = area of wetland type/total wetland area)	
Fractional Area	Score	
Bog 0.06 Fen 0.89 Marsh 0.05	x 3 0.18 x 6 0.00 x 8 7.12 x 15 0.75	
	Wetland type score (maximum 15 poi	(nts) 8.1
1.1.3 SITE TYPE (Fractional Area = a	area of site type/total wetland area)	
	Fractional Area Score	
Isolated Palustrine (permanent or intermittent flow) Riverine Riverine (at rivermouth) Lacustrine (at rivermouth Lacustrine (on enclosed bay, with barrier beach) Lacustrine (exposed to lake) 1.2 BIODIVERSITY 1.2.1 NUMBER OF WETLAND TYPES	0.001 x 1 = 0.001 0.843 x 2 = 1.686 0.147 x 4 = 0.587 x 5 = 0.000 x 5 = 0.000 x 3 = 0.000 0.000 x 2 = 0.053 Sub Total: 2.327 Site Type Score (maximum 5 po	pints) 2.3
(Check only one)	Score	
1) one 2) two 3) X three 4) four	9 points 13 20 30 (umber of Wetland Types Score (maximum 30 points)	20
	4	

(DATE)

1.2.2 VEGETATION COMMUNITIES

Attach a separate sheet listing community (map) codes, vegetation forms and dominant species. Use the form on the following page to record percent area by dominant vegetation form. This information will be used in other parts of the evaluation.

Communities should be grouped by number of forms. For example, 2 form communities might appear as follows:

2 forms

Code	Forn	ns	Dom	ninant Species	_		
M6	re,	ff	re,	Typha latifolia;	ff,	Lemna minor,	Wolffia
S1	ts,	gc	ts,	Salix discolor;	gc,	lmpatiens capen	sis, Thelypteris palustris

Note that the dominant species for each form are separated by a semicolon. The dominant species (maximum of 2) within a form are separated by commas.

Scoring:

Total # of communities	Total # of communities	Total # of communities
with 1-3 forms = 40	with $4 - 5$ forms $= 23$	with 6 or more forms $= 1$
1 = 1.5 points	1 = 2 points	1 = 3 points
2 = 2.5	2 = 3.5	2 = 5
3 = 3.5	3 = 5	3 = 7
4 = 4.5	4 = 6.5	4 = 9
5 = 5	5 = 7.5	5 = 10.5
6 = 5.5	6 = 8.5	6 = 12
7 = 6	7 = 9.5	7 = 13.5
8 = 6.5	8 = 10.5	8 = 15
9 = 7	9 = 11.5	9 = 16.5
10 = 7.5	10 = 12.5	10 = 18
11 = 8	11 = 13	11 = 19
+.5 each additional	+.5 each additional	+ 1 each additional
community = 6.0	community = 5.0	community =
I and the second se		

e.g., a wetland with 3 one form communities 8 six form communities would score:

4 two form communities

12 four form communities and

6+13.5+15=34.5=35 points

Vegetation Communities Score (maximum 45 points)

11.0

Northern Ontario Wetland Ev	(DATE)	
Wetland Name:	Long Lake Wetland Complex	
Wetland Size (ha):	1569.21	
Vegetation Form	% area in which form is dominant	
h	7.56	
С	52.64	
dh	0.00	
dc	0.00	
ts	29.05	
ls	5.49	
ds	0.00	
gc	3.19	
m	0.00	
ne	2.07	
be	0.00	
re	0.00	
ff	0.00	
f	0.00	
su	0.00	
u (unvegetated)	0.00	
Total = 100%	100.00	
	6	

	io Wetland Evaluation Data and Scoring Record	(DATE)
23 DIVERSITY O	F SURROUNDING HABITAT	
heck all appropriate		
	recent burn (< 5 yr)	
	abandoned agricultural land	
X	utility corridor	
X	deciduous forest	
	recent cutover or clearcut (<5 yr)	
X	coniferous forest	
X	mixed forest (at least 25% conifer and 75% deciduous or vice versa)	
X	crops	
	abandoned pits and quarries	
	pasture	
	ravine	
X	fence rows	
X	open lake or deep river	
X	creek flood plain	
	rock outcrop	
		_
Div	versity of Surrounding Habitat Score (1 for each, maximum 7 points)	/
2.4 PROXIMITY T	O OTHER WETLANDS	
	propriate category only)	Scoring
(Check first app	propriate category only)	Scoring
	Hydrologically connected by surface water to other wetlands	Scoring
(Check first app	Hydrologically connected by surface water to other wetlands (different dominant wetland type) or open lake or river	
(Check first app	Hydrologically connected by surface water to other wetlands	Scoring 8 points
(Check first app	Hydrologically connected by surface water to other wetlands (different dominant wetland type) or open lake or river within 1.5 km	
(Check first app	Hydrologically connected by surface water to other wetlands (different dominant wetland type) or open lake or river within 1.5 km Hydrologically connected by surface water to other wetlands	8 points
(Check first app	Hydrologically connected by surface water to other wetlands (different dominant wetland type) or open lake or river within 1.5 km	
(Check first app	Hydrologically connected by surface water to other wetlands (different dominant wetland type) or open lake or river within 1.5 km Hydrologically connected by surface water to other wetlands (same dominant wetland type) within 0.5 km	8 points
(Check first app	Hydrologically connected by surface water to other wetlands (different dominant wetland type) or open lake or river within 1.5 km Hydrologically connected by surface water to other wetlands (same dominant wetland type) within 0.5 km Hydrologically connected by surface water to other wetlands	8 points
(Check first app	Hydrologically connected by surface water to other wetlands (different dominant wetland type) or open lake or river within 1.5 km Hydrologically connected by surface water to other wetlands (same dominant wetland type) within 0.5 km Hydrologically connected by surface water to other wetlands (different dominant wetland type),or open lake or river from	8 points
(Check first app	Hydrologically connected by surface water to other wetlands (different dominant wetland type) or open lake or river within 1.5 km Hydrologically connected by surface water to other wetlands (same dominant wetland type) within 0.5 km Hydrologically connected by surface water to other wetlands	8 points
(Check first app 1) X 2) 3)	Hydrologically connected by surface water to other wetlands (different dominant wetland type) or open lake or river within 1.5 km Hydrologically connected by surface water to other wetlands (same dominant wetland type) within 0.5 km Hydrologically connected by surface water to other wetlands (different dominant wetland type),or open lake or river from 1.5 to 4 km away (Second Marsh Wetland)	8 points
(Check first app	Hydrologically connected by surface water to other wetlands (different dominant wetland type) or open lake or river within 1.5 km Hydrologically connected by surface water to other wetlands (same dominant wetland type) within 0.5 km Hydrologically connected by surface water to other wetlands (different dominant wetland type),or open lake or river from 1.5 to 4 km away (Second Marsh Wetland) Hydrologically connected by surface water to other wetlands	8 points 8
(Check first app 1) X 2) 3)	Hydrologically connected by surface water to other wetlands (different dominant wetland type) or open lake or river within 1.5 km Hydrologically connected by surface water to other wetlands (same dominant wetland type) within 0.5 km Hydrologically connected by surface water to other wetlands (different dominant wetland type),or open lake or river from 1.5 to 4 km away (Second Marsh Wetland)	8 points
(Check first app 1) X 2)	Hydrologically connected by surface water to other wetlands (different dominant wetland type) or open lake or river within 1.5 km Hydrologically connected by surface water to other wetlands (same dominant wetland type) within 0.5 km Hydrologically connected by surface water to other wetlands (different dominant wetland type),or open lake or river from 1.5 to 4 km away (Second Marsh Wetland) Hydrologically connected by surface water to other wetlands (same dominant wetland type) from 0.5 to 1.5 km away	8 points 8
(Check first app 1) X 2) 3)	Hydrologically connected by surface water to other wetlands (different dominant wetland type) or open lake or river within 1.5 km Hydrologically connected by surface water to other wetlands (same dominant wetland type) within 0.5 km Hydrologically connected by surface water to other wetlands (different dominant wetland type),or open lake or river from 1.5 to 4 km away (Second Marsh Wetland) Hydrologically connected by surface water to other wetlands (same dominant wetland type) from 0.5 to 1.5 km away Within 0.75 km of other wetlands (different dominant wetland type)	8 points 8
(Check first app 1) X 2)	Hydrologically connected by surface water to other wetlands (different dominant wetland type) or open lake or river within 1.5 km Hydrologically connected by surface water to other wetlands (same dominant wetland type) within 0.5 km Hydrologically connected by surface water to other wetlands (different dominant wetland type),or open lake or river from 1.5 to 4 km away (Second Marsh Wetland) Hydrologically connected by surface water to other wetlands (same dominant wetland type) from 0.5 to 1.5 km away Within 0.75 km of other wetlands (different dominant wetland type) or open lake or river, but not hydrologically connected by	8 points855
(Check first app 1) X 2)	Hydrologically connected by surface water to other wetlands (different dominant wetland type) or open lake or river within 1.5 km Hydrologically connected by surface water to other wetlands (same dominant wetland type) within 0.5 km Hydrologically connected by surface water to other wetlands (different dominant wetland type),or open lake or river from 1.5 to 4 km away (Second Marsh Wetland) Hydrologically connected by surface water to other wetlands (same dominant wetland type) from 0.5 to 1.5 km away Within 0.75 km of other wetlands (different dominant wetland type)	8 points 8
(Check first app 1) X 2) 3) 4) 5)	Hydrologically connected by surface water to other wetlands (different dominant wetland type) or open lake or river within 1.5 km Hydrologically connected by surface water to other wetlands (same dominant wetland type) within 0.5 km Hydrologically connected by surface water to other wetlands (different dominant wetland type),or open lake or river from 1.5 to 4 km away (Second Marsh Wetland) Hydrologically connected by surface water to other wetlands (same dominant wetland type) from 0.5 to 1.5 km away Within 0.75 km of other wetlands (different dominant wetland type) or open lake or river, but not hydrologically connected by surface water	8 points855
(Check first app 1) X 2)	Hydrologically connected by surface water to other wetlands (different dominant wetland type) or open lake or river within 1.5 km Hydrologically connected by surface water to other wetlands (same dominant wetland type) within 0.5 km Hydrologically connected by surface water to other wetlands (different dominant wetland type),or open lake or river from 1.5 to 4 km away (Second Marsh Wetland) Hydrologically connected by surface water to other wetlands (same dominant wetland type) from 0.5 to 1.5 km away Within 0.75 km of other wetlands (different dominant wetland type) or open lake or river, but not hydrologically connected by surface water Within 1 km of other wetlands,but not hydrologically	 8 points 8 5 5 5
(Check first app 1) X 2) 3) 4) 5)	Hydrologically connected by surface water to other wetlands (different dominant wetland type) or open lake or river within 1.5 km Hydrologically connected by surface water to other wetlands (same dominant wetland type) within 0.5 km Hydrologically connected by surface water to other wetlands (different dominant wetland type),or open lake or river from 1.5 to 4 km away (Second Marsh Wetland) Hydrologically connected by surface water to other wetlands (same dominant wetland type) from 0.5 to 1.5 km away Within 0.75 km of other wetlands (different dominant wetland type) or open lake or river, but not hydrologically connected by surface water	8 points855
(Check first app 1) X 2) 3) 4) 5)	Hydrologically connected by surface water to other wetlands (different dominant wetland type) or open lake or river within 1.5 km Hydrologically connected by surface water to other wetlands (same dominant wetland type) within 0.5 km Hydrologically connected by surface water to other wetlands (different dominant wetland type),or open lake or river from 1.5 to 4 km away (Second Marsh Wetland) Hydrologically connected by surface water to other wetlands (same dominant wetland type) from 0.5 to 1.5 km away Within 0.75 km of other wetlands (different dominant wetland type) or open lake or river, but not hydrologically connected by surface water Within 1 km of other wetlands,but not hydrologically	 8 points 8 5 5 5
(Check first app 1) X 2)	Hydrologically connected by surface water to other wetlands (different dominant wetland type) or open lake or river within 1.5 km Hydrologically connected by surface water to other wetlands (same dominant wetland type) within 0.5 km Hydrologically connected by surface water to other wetlands (different dominant wetland type),or open lake or river from 1.5 to 4 km away (Second Marsh Wetland) Hydrologically connected by surface water to other wetlands (same dominant wetland type) from 0.5 to 1.5 km away Within 0.75 km of other wetlands (different dominant wetland type) or open lake or river, but not hydrologically connected by surface water Within 1 km of other wetlands,but not hydrologically connected by surface water	 8 points 8 5 5 2

Northern Ontario Wetland Evaluation Data and Scot	ring Record	(DATE)
1.2.5 INTERSPERSION		
Number of Intersections		
(Check one)	Score	
1) 26 or less	3	
2) 27 to 40	6 9	
3) 41 to 60 4) 61 to 80	12	
5) 81 to 100	15	
6) 101 to 125	18	
7) 126 to 150	21	
8) 151 to 175	24	
9) 176 to 200	27	
10) >200 <u>X</u>	30	
Interspersion Score	e (Choose one only maximum 30 points)	30
1.2.6 OPEN WATER TYPES		
Permanently flooded:		
(Check one)	Score	
1) type 1	8	
2) X type 2	8	
3) type 3	14	
4) type 4	20	
5) type 5	30 8	
6) type 6 7) type 7	14	
8) type 8	3	
9) no open water	0	
Onan Water Tyna Scora	(Choose one only maximum 30 points)	8
Open water Type Score	(Choose one only maximum 30 points)	
<u> </u>	8	

(DATE)

1.3 SIZE

1569.21 hectares

84 Subtotal for Biodiversity

Size Score (Biological Component) (maximum 50 points)

50

Evaluation Table Size Score (Biological component)

Wetland		(<u> </u>		re for Biodi	versity Subc	omponent			
size (ha)	<37	37-47	48-60	61-72	73-84	85-96	97- 108	109- 120	121- 132	>132
<20 ha	1	5	7	8	9	17	25	34	43	50
20-40	5	7	8	9	10	19	28	37	46	50
41-60	6	8	9	10	11	21	31	40	49	50
61-80	7	9	10	11	13	23	34	43	50	50
81-100	8	10	11	13	15	25	37	46	50	50
101-120	9	11	13	15	18	28	40	49	50	50
121-140	10	13	15	17	21	31	43	50	50	50
141-160	11	15	17	19	23	34	46	50	50	50
161-180	13	17	19	21	25	37	49	50	50	50
181-200	15	19	21	23	28	40	50	50	50	50
201-400	17	21	23	25	31	43	50	50	50	50
401-600	19	23	25	28	34	46	50	50	50	50
601-800	21	25	28	31	37	49	50	50	50	50
801-1000	23	28	31	34	40	50	50	50	50	50
1001-1200	25	31	34	37	43	50	50	50	50	50
1201-1400	28	34	37	40	46	50	50	50	50	50
1401-1600	31	37	40	43	49	50	50	50	50	50
1601-1800	34	40	43	46	50	50	50	50	50	50
1801-2000	37	43	47	49	50	50	50	50	50	50
>2000	40	46	50	50	50	50	50	50	50	50

Northern Ontario W	etland Evaluation	on Data and Sco	oring Record		(DATE)
		2.0 SOCIAL	COMPONENT		
2.1 ECONOMICALLY	Y VALUABLE	PRODUCTS	<u> </u>		
2.1.1 WOOD PRODUCT	S				
Area of wetland forested ((ha), i.e. domina	nt form is h or	c. Note that this is	not wetland size. (Check one	
only)	· //				
			Score		
1)	<5 ha		0		
2)	5 -25 ha		4		
	26 -50 ha		6		
	51- 100 ha		8		
	1 -200 ha		11		
6) X	>200 ha		14		
Source of information:		NDCI .	nonnina		
Source of information.		INKSI I	napping		
	Wood	d Products Sco	ore (Score one onl	y, maximum 14 points)	14
2.1.2 Lowbush Cranberry	,				
(Check one)				Score (Choose one)	
Present		1)		2 points	
Absent		2)	X	0	
S					
Source of information:	-				
		Lowbus	h Cranberry Sco	re (maximum 2 points)	0
		Lowbus	in Clamberry Scot	te (maximum 2 points)	0
2.1.3 Wild Rice				_	
(Check one)				Score (Choose	one)
Present (at least 0.5	ha)	1)	X	10 points	
Absent		2)		0	
Source of infolmation:		Cochrane I	MNR office		
		Wild Di	ce Score (maximu	um 10 noints)	10
		Wild Ki	ce score (maximu	im 10 points)	10
		1	0		

Source	X	ximum	Score (Cho 12 points 0 12 points)	oose one	12			
2) ochrane MNF Commercial Source	R office	ximum	12 points 0	oose one				
2) ochrane MNF Commercial Source	R office		0		12			
chrane MNF Commercial Source	l Fish Score (ma	ximum			12			
Commercial Source	l Fish Score (ma	ximum	12 points)		12			
Commercial Source	l Fish Score (ma	ximum	12 points)	ı	12			
Source		ximum	12 points)		12			
	e of information							
	e of information							
	e of information							
	oi information							
_								
Co	ochrane MNR off	ice, fiel	d work					
beaver 3 Cochrane MNR office, field work marten 3 Cochrane MNR office								
red fox 3 field work								
ned fox								
Wetland-As	sociated Use							
	Nature Enjoym		Fishing					
ting	Nature Enjoym Ecosystem Stu		Fishing					
	Nature Enjoym Ecosystem Stu 40 points		40 points					
ting s	Nature Enjoym Ecosystem Str 40 points 20		40 points 20					
ting	Nature Enjoym Ecosystem Str 40 points 20 8	ady	40 points 20 8	X				
ting s	Nature Enjoym Ecosystem Str 40 points 20		40 points 20	X 8				
				Furbearer Score (maximum 12 points)				

Northern Ontario Wetland Evaluation,	, Data and Scoring: Record	(DATE)
2.3 LANDSCAPE AESTHETICS		
2.3.1 DISTINCTNESS		
(Check one)	Score (Choose one	e)
Clearly distinct 1)	3 points	
Indistinct 2) X	0	
I	Landscape Distinctness Score (maximum 3 points)	0
2.3.2 ABSENCE OF HUMAN DISTURB	ANCE	
(Check one)	Score (Choose one)
Human disturbances absent or nearly		•)
One or several localized disturbances		
Moderate disturbance; localized wate	, <u> </u>	
Wetland intact but impairment of eco		
intense in some areas	4) 1	
Extreme ecological degradation, or w		
severe and widespread	5)0	
Source of information:	air photos, field work	
Abcom	os of Human Disturbance Cooks (maximum 7 maints)	4
Absend	ce of Human Disturbance Score (maximum 7 points)	4
2.4 EDUCATION AND PUBLIC AWA	RENESS	
2.4 LDC CHITCH THE T CDLIC II WAS	THE TEST	
2.4.1 EDUCATIONAL USES		
(Check one)	Score (Choose one	e)
Frequent 1)	20 points	,
Infrequent 2)	12	
No visits 3)	X 0	
Source of information:	Cochrane MNR office	
Source of information.	Cociliane Wink office	
	Educational Uses Score (maximum 20 points)	0
2.4.2 FACILITIES AND PROGRAMS		
		
(check one)	Score	(Choose one)
Staffed interpretation centre	1) 8 poir	nts
No interpretation centre or staff but a	system of	
self-guiding trails or brochures availa	ble 2) 4	
Facilities such as maintained paths (e	.g., woodchips)	
boardwalks, boat launches or observa		
but no brochures or other interpretation		
No facilities or programs	4) <u>X</u> 0	
Source of information:	Cochrane MNR office	
I	Facilities and Programs Score (maximum 8 points)	0
	12	

Northern Ontario Wetland Evaluation	on. Data and Scoring	g Rec	ord			DATE)
	,	5			`	,
2.4.3 RESEARCH AND STUDIES	_				G	
(check appropriate spaces)					Score	
Long term research has been done	- 1 : 4: <i>C</i> : -			_	12 points	
Research papers published in refere journal or as a thesis	ed scientific				10	
One or more (non-research) reports	have been written			_	10	
on some aspect of the wetland 's fl						
hydrology etc.	ora rauna				5	
No research or reports			X		0	
Two research of reports			21	_	Ü	
Attach list of known reports by abo	ve categories					
Research and S	tudies Score (Score	e is cu	ımulative, maxim	um 12	2 points)	0
2.5 PROXIMITY TO AREAS OF H	TIMANI CEPTI EN	#TrN17	r			
Circle the highest applicable score	UNIAN SETTLEN	IEN	<u> </u>			
chere are ingliess applicable score						
Distance of wetland from	1)		2) populat	ion	3) popu	lation
settlement	population> 10,	000	2,500 -10	,000	<2,500 o	or cottage
					comn	nunity
1) Within or adjoining	40 points		26		16	
settlement						
2) 0.5 to 10 km from settlement	26		16		10	
3) 10 to 60 km from settlement	12		8	X	4	
4) >60 km from settlement	5		2		0	
5) >100 km from settlement	0		0		0	
		0		0		0
Name of settlement:	Town	of Co	ah wan a			
ivalie of settlement.	TOWIL	or Co	Ciliane			
Prox	imity to Human Se	ettlen	nent Score (maxi	mum 4	40 points)	8
2.6 OWNERSHIP (FA= fraction Ar	rea)				Score	
FA of wetland in public or private of	-				0.00	
held under contract or in trust for w	-		X	10	= 0.00	
FA of wetland area in public owner	_		1.00	8	= 0.00	
FA of wetland area in private owne	rsnip,not as above		1.00 x	4	= 4.00	_
Source of information:	Cochran	e MN	R office			
		Own	ership Score (ma	ximun	n 10 points)	4
	13					

(Date)

2.7 SIZE

1569.21 hectares

69 Subtotal for Social

Evaluation Table for Size Score (Social Component)

	Table	for Size Sco	re (Social C	omponent)						
Wetland Size (ha)	a) Total for Size Dependent Score									
	<31	31-45	46-60	61-75	76-90	91-105	106-109	121-135	136-150	>150
<2 ha	1	2	4	8	10	12	14	14	14	15
2 - 4ha	1	2	4	8	12	13	14	14	15	16
5 - 8ha	2	2	5	9	13	14	15	15	16	16
9 - 12ha	3	3	6	10	14	15	15	16	17	17
13-17	3	4	7	10	14	15	16	16	17	17
18-28	4	5	8	11	15	16	16	17	17	18
29-37	5	7	10	13	16	17	18	18	19	19
38-49	5	7	10	13	16	17	18	18	19	20
50-62	5	8	11	14	17	17	18	19	20	20
63-81	5	8	11	15	17	18	19	20	20	20
82-105	6	9	11	15	18	18	19	20	20	20
106-137	6	9	12	16	18	19	20	20	20	20
138-178	6	9	13	16	18	19	20	20	20	20
179-233	6	9	13	16	18	20	20	20	20	20
234-302	7	9	13	16	18	20	20	20	20	20
303-393	7	9	14	17	18	20	20	20	20	20
394-511	7	10	14	17	18	20	20	20	20	20
512-665	7	10	14	17	18	20	20	20	20	20
666-863	7	10	14	17	19	20	20	20	20	20
864-1123	8	12	15	17	19	20	20	20	20	20
1124-1460	8	12	15	17	19	20	20	20	20	20
1461-1898	8	13	15	18	19	20	20	20	20	20
1899-2467	8	14	16	18	20	20	20	20	20	20
>2467	8	14	16	18	20	20	20	20	20	20

Total Size Score (Social Component)

18

Northern Ontario Wetland Evaluation, Data and Scoring Record (DATE) 2.8 ABORIGINAL AND CULTURAL HERITAGE VALUES Either or both Aboriginal or Cultural Values may be scored. However, the maximum score permitted for 2.8 is 30 points. Attach documentation. 2.8.1 ABORIGINAL VALUES Full documentation of sources must be attached to the data record. 1) Significant 30 points 2) Not Significant 0 3) Unknown 0 Total: 2.8.2 CULTURAL HERITAGE 30 points 1) Significant 2) Not Significant 0 = 3) Unknown 0 Total: **Aboriginal Values/Cultural Heritage Score (maximum 30 points)**

15

(DATE)

3.0 HYDROLOGICAL COMPONENT

3.1 FLOOD ATTENUATION

If the wetland is a complex including isolated wetlands, apportion the l00 points according to area. For example if 10 ha of a l00 ha complex is isolated, the isolated portion receives the maximum proportional score of 10. The remainder of the wetland is then evaluated out of 90.

Step 1: If wetland is entirely <u>Isolated</u>, go directly to Step 5.

If wetland is lacustrine and the ratio of wetland area: lake area is <0.1, or wetland is

riverine on the St. Mary's River, go to Step 5

All other wetlands, go through steps 2, 3, 4 and 5.

Step 2: Determination of Upstream Detention Factor (DF)

(a)	Wetland area (ha)			1569.21					
(b)	Total area (ha) of upstream detention are	Total area (ha) of <u>upstream</u> detention areas							
	(include the wetland itself)								
(c)	Ratio of (a):(b)			0.96					
(d)	Upstream detention factor: (c) $\times 2 =$	1.92		1.00					
	(maximum allowable factor = 1)		-						

Step 3: Determination of Peak Flow Attenuation Factor (AF)

(a)	Wetland area (ha)	1569.21					
(b)	Size of catchment basin (ha) upstream of						
	(include wetland itself in catchment area)						
(c)	Ratio of (a):(b)	0.59					
(d)	Wetland attenuation factor: (c) $\times 10 =$	5.9		1.00			
	(maximum allowable factor = 1)						

Step 4: Determination of Wetland Surface Form Factor (FF)

From the list below, select the surface form which best describes the wetland.

	Factor	
Flooded with little or no aquatic vegetation		0
Flooded but with submergent, emergent or floating vegetation		0.2
Flat (lawn) vegetation (typical of fens)		0.5
Hummock-depression microtopography	X	0.7
Patterned (e.g., string bog, ribbed fen)		1
Surface Form Factor (FF)	0.7	

(Maximum allowable factor = 1)

(DATE)

Step 5:

1. Wetland is entirely Isolated 100 points

2. Wetland is lacustrine and the ratio of 0 points

wetland area: lake area is <0.1

3. Wetland is riverine along the St. Mary's River 0 points

4. For all other wetlands*, calculate as follows:

a) Upstream Detention Factor (DF) (Step 2)
b) Wetland Attenuation Factor (AF) (Step 3)
c) Surface Form Factor (FF) (Step 4)
0.70

 $[(DF + AF + FF)/3] \times 100*$ 90

*Unless wetland is a complex including isolated portions -- see above

Total Flood Attenuation Score (maximum 100 points)

90 (

Score = 0

3.2 GROUND WATER RECHARGE

3.2.1 SITE TYPE

(b)

(a) Wetland > 50% lacustrine (by area) or located on the

St. Mary's River

Wetland not as above. Calculate final score as follows:

(FA= area of site type/total area of wetland)

0.8438004 FA of isolated or palustrine wetlandx20=16.880.1467936 FA of riverine wetlandx5=0.730.0266121 FA of lacustrine wetland (wetland <50% lacustrine)</td>x0=0.00

Site Type Score: (maximum 20 points) 18

3.2.2 SOILS

EVALUATION:

Dominant Wetland Type	Sand, loam, gravel, till	Clay or bedrock		
Lacustrine or on St. Mary's River	0		0	
Isolated	10		5	
Palustrine	7	X	4	
Riverine (not on St. Mary's River)	5		2	
Totals	7		0	

Hydrological Soil Class Score (maximum 10 points)

7

(DATE)

3.3 DOWNSTREAM WATER QUALITY IMPROVEMENT

3.3.1 WATERSHED IMPROVEMENT FACTOR

Calculation of Watershed Improvement Score is based upon the fractional area (FA) of each site type within the wetland. FA = area of site type/total area of the wetland.

Site Type	<u>Impro</u>	Improvement Factor (IF)						
Isolated	FA	0.0005927	X	0.5 =	0.0003			
Riverine	FA	0.1467936	X	1 =	0.15			
Palustrine with no inflow	FA		X	0.7 =	0.00			
Palustrine with inflows	FA	0.844	X	1 =	0.84			
Lacustrine on lake shoreline	FA	0.027	X	0.2 =	0.01			
Lacustrine at lake inflow or outflow	FA		X	1 =	0.00			

Watershed Improvement Score (IF x 30) (maximum = 30)

29.89

3.3.2 ADJACENT AND WATERSHED LAND USE

EVALUATION

Step 1: Determination of Maximum Initial Score

Wetland on the Great Lakes or St. Mary's River (Go to Step 5a)

X All other wetlands (Go through steps 2, 3,4 and 5b)

Step 2: Determination of Broad Upslope Land Use (BLU)

Assess broad upslope land uses within the previous 5 years, agriculture, or other activities which alter the natural vegetation cover in an extensive manner.

Choose one		Score
>50% of catchment basin		20
20-50% of catchment basin		14
<20% of catchment basin	X	4

Score for BLU

4

Step 3: Determination of Linear Upslope Land Uses (LUU)

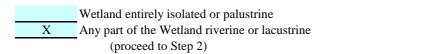
Assess linear upslope uses (LUU) e.g., roads, railways, hydro corridors, pipelines, etc., crossing the upslope catchment within 200m of the wetland boundary.

Choose the highest only		Score
Major corridor*	X	15
Secondary corridor		11
Tertiary corridor		6
Temporary or abandoned		3
None		0

Score for LUU

15

Major, secondary and tertiary roads are those that are indicated as such on the provincial highways maps. Major hydro corridors are trunk lines coming directly from a generating station. Major pipelines are transcontinental lines. Secondary corridors are regional distribution lines (i.e. multi-cable hydro corridors not emanating directly from a generating station or regional gas distribution lines). Tertiary corridors are single hydro lines or local gas distribution lines (i.e. to domestic users).


]	North	ern Ontario Wetla	nd Eval	uation							(DAT	E)
olants	s poi , maj	Determination on the source (PS) land or aggregate operally if a point source	d uses p ations (t	roducing indo out not small	ustrial effl pits use fo	uents such a r local road	const	ruction), etc. Score			
		Present Not present	X	Score 15 0	Score	e for PS		0	l			
Step	<u>5:</u>	Calculation of t	otal sco	re for Adjac	ent and V	Vatershed I	Land V	U se				
		etland on the Greatl other wetlands,			River							
					Final	Score BL	U+ L U	U+PS	1	19		
3.3.3	VEG	ETATION FORM	1									
		ose the category the tation of the wetla		describes the								
	Eme	s, shrubs or herbs rgents, submergen e or no vegetation	ts (ne, r	-)	X		Score 8 poi 10 0				
2.4		CADDON CINI	7	Domin	ant Veget	ation Form	Scor	e (max	imum 10 po	oints)		8
3.4	CI.	CARBON SINE										
		ose the category th										
	1)	Wetland a bog o							15 points			
	2)	Wetland has org of the area (i.e. r soils, any wetlan	nainly n				X		6			
	3)	Marshes and swa	amps wi	th >50% orga	anic soil				9			
	4)	Wetland with les	ss than 1	0% of soils o	organic				0			
	Carbon Sink Score (maximum 15 points)							6				
					19							

Northern Ontario Wetland Evaluation

3.5 SHORELINE EROSION CONTROL

From the wetland vegetation map determine the <u>dominant</u> vegetation type within the erosion zone for <u>lacustrine and riverine site type areas only.</u> Score according to the factors listed below.

Step 1: Score

Step 2:

Choose the one characteristic that best describes the shoreline vegetation (see text for a definition of shoreline)

			Score
1)		Trees and shrubs	15
2)	X	Emergent vegetation	8
3)		Submergent vegetation	6
4)		Other shoreline vegetation	3
5)		No vegetation	0

Shoreline Erosion Control Score (maximum 15 points)

8

0

3.6 GROUNDWATER DISCHARGE

(Circle the characteristics that best describe the wetland being evaluated and then sum the scores)

Category	Catchment Interaction					
Wetland type	Bog = 0		Swamp/Marsh = 2	2	Fen = 5	
Basin topography	Flat/Rolling = 5		Hilly = 2		Major relief	
		5			break = 5	
Weland area: Upslope	Large (>50%) = 0		Moderate		Small ($<5\%$) = 5	
catchment area			(6-50%) = 2			5
Lagg Development	None found = 0	0	Minor = 2	0	Extensive $= 5$	
Seeps at wetland	None found = 0		1-3 seeps = 5		4 or more	
edge		0			seeps = 10	
Iron precipitates	None = 0		1-3 deposits = 2		4 or more	
evident at edge		0			deposits = 5	
Surface marl deposits	None = 0	0	1-3 deposits = 2		>3 = 5	
Wetland pH	Low < 4.2 = 0		Moderate $4.2-5.7 = 5$		High $> 5.7 = 10$	10
Catchment soil	Patchy = 0		Thin $(<20cm) = 2$		Thick $= 5$	
coverage						5
Catchment soil	Low = 0		Moderate = 2		High = 5	
permeability				2		
Totals		5		4		20

(Scores are cumulative maximum score 30 points)

Groundwater Discharge Score (maximum 30 points)

Northern Ontario Wetland Evaluation Data and Scoring Record	Northern	Ontario	Wetland	Evaluation	Data	and	Scoring	Record
---	----------	---------	---------	------------	------	-----	---------	--------

(DATE)

4.0 SPECIAL FEATURES COMPONENT

4.1 RARITY

4.1.1 WETLANDS

Hills Site Region and Site District (5E only):

Wetland type (check one or more)

X	Bog
	Fen
X	Swamp
X	Marsh

Evaluation Table for Scoring Rarity of Wetland Type.

Unit	Site Region				
Number	& District	Marsh	Swamp	Fen	Bog
2E	James Bay	20	20	0	20
2W	Big Trout Lake	20	20	0	10
3E	Lake Abitibi	20	20	10	0
3W	Lake Nipigon	20	20	10	0
3S	Lake St. Joseph	20	20	10	0
4E	Lake Temagami	20	20	10	0
4W	Pigeon River	20	10	20	0
4S	Wabigoon Lake	20	10	20	0
5E-1	Thessalon	10	0	30	20
5E-2	Gore Bay	20	0	20	20
5E-3	La Cloche	20	0	30	20
5E-4	Sudbury	10	0	30	10
5E-5	North Bay	10	0	20	0
5E-6	Tomiko	10	0	20	0
5E-7	Parry Sound	20	0	30	20
5E-8	Huntsville	20	0	30	20
5E-9	Algonquin Park	10	0	30	0
5E-10	Brent	20	0	30	0
5E-11	Bancroft	0	10	30	10
5E-12	Renfrew	0	0	30	10
5E-13	Batchewana	10	0	10	30
5-S	Lake of the Woods	10	10	20	10

Rarity of Wetland Type Score (maximum 70 points)

40

N	Northern Ontario Wetland Evaluat	ion, Data and Sco	oring Reco	ord (DAT	E)
4.1.2 SPI	ECIES				
4.1.2	2.1 BREEDING HABITAT	FOR AN ENDA	NGERE	D OR THREATENED SPECIES	
1111		TORTH LIVE	II (GLILL)		1
	Name of species			Source of information	
1)		Г		7	
2)					
3)					
4)					
5)	Total:		0		
Attach doe	cumentation.		0	_	
Attach doc	umentation.				
Scoring:					
	one species	250 points			
For e	each additional species	250 points			
(score is c	umulative, no maximum score)				
(Seore is ex	amaran seore)				
	Breeding Habitat for En	dangered Specie	es Score (1	no maximum)	0
417		ON OD EEEDIN		EAT EOD AN ENDANGEDED OD	
	<u>2.2 TRADITIONAL MIGRATIONAL M</u>	<u>ON OR FEEDIN</u>	G HABI	TAT FOR AN ENDANGERED OR	•
	KENTENED OF ECIES				
	Name of species	_		Source of information	
1)	Barn swallow		150	field work (breeding bird survey	y)
2)		<u> </u>			
3)					
4)					
5)	Total:		150		
	Total.		130	_	
Attach doc	cumentation.				
Scoring:					
	one species	150 points			
For	each additional species	75			
(score is co	umulative, no maximum score)				
`	,				
	Traditional Habita	at for Endangere	ed Species	Score (no maximum)	150

1) 2) 3) 4) 5) 6) 7) 8) 9) 10 11 12 13 14	Name of	species	CIALLY SIGNI		L SPECIE	Source of information	
2) 3) 4) 5) 6) 7) 8) 9) 10 11 12	——————————————————————————————————————					Source of information	
2) 3) 4) 5) 6) 7) 8) 9) 10 11 12							
2) 3) 4) 5) 6) 7) 8) 9) 10 11 12							
4) 5) 6) 7) 8) 9) 10 11 12)))						
5) 6) 7) 8) 9) 10 11 12	(1) (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4						
6) 7) 8) 9) 10 11 12 13	(1) (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4						
7) 8) 9) 10 11 12	(1) (1) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4						
8) 9) 10 11 12 13	2)						
9) 10 11 12 13	(1) (2) (3) (4)						
10 11 12 13	(1) (2) (3) (4)						
11 12 13	2) 3) 4)						
12 13	3)						
13	3) 4)						
14							
15	5)						
	Attach se	eparate l	ist if necessary	; Attach documenta	ation		
	pecies	=	50 points	pecies in the wetlar	=	154	
	pecies	=	80	15 species	=	156	
	pecies	=	95	16 species	=	158	
4 s _I	pecies	=	105	17 species	=	160	
	pecies	=	115	18 species	=	162	
	pecies	=	125	19 species	=	164	
	pecies	=	130	20 species	=	166	
	pecies	=	135	21 species	=	168	
_	pecies	=	140	22 species	=	170	
	pecies	=	143	23 species	=	172	
	pecies pecies	=	146 149	24 species 25 species	_ =	174 176	
_	pecies	=	152	23 species	=	170	
_				example 26 speci	es = 177 ·	points, 27 species = 178	
ints et	_	ery spec	res past 25 (101	example, 20 speci		points, 27 species 170	
) max	imum score)						
			Provin	cially Significant A	Animal S	pecies Score (no maximum)	
				• 0		- '	

		Wetland Eval						(DATE)
4.1.2.4	4 PRO	OVINCIALLY	SIGNIFICAN'	Γ PLANT SPE	CIES	_		
	(Scientific Common I	names must be Name	recorded)	Scientific N	Iame		Source of infor	rmation
1)								
2)							-	
3)								
4)							-	
5) 6)			-					
7)								
8)								
9)								
10)								
11)								
12)								
13)								
14)								
15)								
Scoring: Number of r	provincially	y significant pla	ant species in t	he wetland:				
, will of p	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	, significant pro	sp •••• ·					
l species	=	50 points	14 specie	s =	154			
2 species	=	80	15 specie	s =	156			
3 species	=	95	16 specie		158			
species	=	105	17 specie		160			
species	=	115	18 specie		162			
species	=	125	19 specie		164			
species	=	130	20 specie		166			
3 species	=	135	21 specie		168			
species	=	140	22 specie		170			
0 species	=	143	23 specie		172			
1 species	=	146	24 specie		174			
2 species	=	149	25 specie	s =	176			
13 species	=	152						
Add one poi	nt for ever	y species past 2	25 (for example	e, 26 species =	= 177 points	, 27 species	= 178	
		Provin	cially Signific	ant Plant Spe	cies Score ((no maximu	m)	0

Northern Ontario Wetland Evaluation, Data and Scoring Record	N	Vorthern	Ontario	Wetland	Evaluation,	Data and	Scoring Record
--	---	----------	---------	---------	-------------	----------	----------------

(DATE)

4.1.2.5 REGIONALLY SIGNIFICANT SPECIES (SITE REGION)

Scientific names must be recorded for plant species. Lists of significant species must be approved by MNR.

SIGNIFICANT IN SITE REGION:

C	Common Name	Scientific Name	Source of information
1)	Connecticut warbler	Oporornis agilis	breeding bird survey
2)	Sandhill crane	Grus canadensis	breeding bird survey
3)	Vesper sparrow	Pooecetes gramineus	breeding bird survey
4)			
5)			
6)			_
7)			
8)			
9)			
10)			
11)			
12)			
13)			
14)			
15)			

Attach separate list if necessary .Attach documentation.

No. of species significant in Site Region

1 species	=	20	6 species	=	55
2 species	=	30	7 species	=	58
3 species	=	40	8 species	=	61
4 species	=	45	9 species	=	64
5 species	=	50	10 species	=	67

Add one point for every species past 10. (no maximum score)

Significant Species (Site Region) Score (no maximum)

^{**} Score only if there is an approved list Scoring:

Northern Ontario	Wetland	Evaluation,	Data	and	ScoringRecord

(DATE)

4.2.1.6 LOCALLY SIGNIFICANT SPECIES (SITE DISTRICT)

Scientific names must be recorded for plant species. Lists of significant species must be approved by MNR.

Common Name	Scientific Name	Source of information
1		
2		
3		
4		
5		
6		
7		
8	<u> </u>	
9		
10		
12		
13		
14		
15		
16		
17		
18		

Attach separate list if necessary .Attach documentation.

Scoring:

No. of species significant in Site District

1 species	=	10	6 species	=	41
2 species	=	17	7 species	=	43
3 species	=	24	8 species	=	45
4 species	=	31	9 species	=	47
5 species	=	38	10 species	=	49

For each significant species over 10 in the wetland, add 1 point.

Locally Significant Species (Site District) Score (no maximum)

Northern Ontario Wetland Evaluation (DATE) 4.1.2.7 SPECIES OF SPECIAL STATUS Black Duck Suitable breeding habitat present and within assessment range (Figure 17) Assessment Category Check one Score 40-80 Indicated Pairs/100 km sq 25 points 20-40 Indicated Pairs/100 km sq 20 10-20 Indicated Pairs/100 km sq X 15 5-10 Indicated Pairs/100 km sq 10 1-5 Indicated Pairs/100 km sq 5 0 Habitat not suitable 0 Out of assessment range Black Duck Score (maximum 25 points) 4.2 SIGNIFICANT FEATURES AND/OR FISH & WILDLIFE HABITAT 4.2.1 NESTING OF COLONIAL WATERBIRDS Status Name of species Source of Information Score Currently nesting 50 points Known to have nested 25 within past 5 years Active feeding area (great blue heron excluded) 15 None known X 0 Attach documentation (nest locations etc., if known) Colonial Waterbirds Score (maximum 50 points) 4.2.2. WINTER COVER FOR WILDLIFE (Check only highest level of significance) Score (one only) Provincially significant 100 1) 2) Significant in Site Region 50 Significant in Site District 25 3) 3) Locally significant 10 Little or poor winter cover present 0 4) Source of information: Winter Cover for Wildlife Score (maximum 100 points) 0 27

Nor	thern Ontario Wetland Evalua	tion, Data ar	nd Scoring Reco	ord		(DATE)
4.2.3 WA	TERFOWL STAGING AND/O	OR MOULT	ING			
	ly highest level of significance arms, maximum score 150)	for both sta	ging and moulti	ing; score is cum	ılative	
1) 2) 3) 4) 5) 6)	Nationally significant Provincially significant Regionally significant Known to occur Not possible Not known Total:	Staging	Score (one only) 150 100 50 10 0	Moulting X 0	Score (one only) 150 100 50 10 0	
Source of i			servation by dis	trict staff)	150 points)	20
121 WA	TERFOWL BREEDING	i Woulding	and Staging St	ore (maximum)	130 points)	20
7.2.7 WA	(Check only highest level of	- significance) S	core		
1) 2) 3) 4)	Provincially signing Regionally signing X Habitat suitable Habitat not suitable	icant		100 50 10 0		
Source of i	information:		field work			
		Waterfow	l Breeding Sco	re (maximum lC	OO points)	10
4 2 5 MIC	GRATOR PASSERINE, SHO				• • • • • • • • • • • • • • • • • • • •	
1.2.5 11110	(check highest applicable cat		CIUII TOIL DI	or o vertimeer		
1) 2) 3) 4)	Provincially sign Significant in Sit Significant in Sit X Not significant Information:	e Region		100 50 10 0		
Source of I		ebird or Ra	ptor Stopover	Score (maximum	m 100 points)	0
	. ,,		• • •	, -	•,	
			28			

Northern Ontario Wetland Evaluation, Data and Scoring R	lecord	(DATE)
4.2.6 UNGULATE HABITAT		
EVALUATION		
Score $(1) + (2) + $ one of (3) to (6)		
Score $(1) + (2) + one of (3) to (6)$	Score	
(1) X Ungulate summer cover	15 points	
(2) Mineral licks	50	
(3) Moose aquatic feeding area Class 1	0	
(4) X Moose aquatic feeding area Class 2	10	
(5) Moose aquatic feeding area Class 3	20	
(6) Moose aquatic feeding area Class 4	35	
(Seem is sumulative for a maximum possible seem of 100)		
(Score is cumulative for a maximum possible score of 100)	ore (maximum 100 points)	25
Cingulate Habitat Seo	(maximum 100 points)	23
4.2.7 FISH HABITAT		
4271 C : IN HI:		
4.2.7.1 Spawning and Nursery Habitat		
Table 5. Area Factors for Low Marsh, High Marsh, and Swar	mp Communities.	
The second secon	р со	
No. of ha of Fish Habitat	Area Factor	
< 0.5 ha	0.1	
0.5- 4.9	0.2	
5.0- 9.9	0.4	
10.0- 14.9	0.6	
15.0 -19.9	0.8	
20.0+ ha	1.0	
Step 1:		
Fish habitat is not present within the wetland (Score	= 0)	
	2)	
X Fish habitat is present within the wetland (Go to Step	0 2)	
Step 2: Choose only one option		
1)Significance of the spawning and nursery habit	tat within the wetland is know	'n
(Go to Step 3)		
2) V Significance of the analysis and approximately	tot within the westland is not	
2) X Significance of the spawning and nursery habit known (Go through Steps 4, 5, 6 and 7)	tat within the wetland is not	
Known (Go unough Steps 4, 3, 0 and 7)		

Norther	rn Ontario Wetland Evaluation		(DATE)		
Step 3:	Select the highest appropriate category below attach documentation:				
1)	Significant in Site Region	100 points			
2)	Significant in Site District	50			
3)	Locally Significant Habitat (5.0+ ha)	25			
4)	Locally Significant Habitat (<5.0 ha)	15			
	Score for Spawning and Nursery I	Habitat (maximum score 100 points)	0		
Step 4: Proceed to Steps 4 to 7 only if Step 3 was not answered.					
(Low Marsh: marsh area from the existing water line out to the outer boundary of the wetland)					
Low marsh not present (Continue to Step 5) X Low marsh present (Score as follows)					

Scoring for Presence of Key Vegetation Groups

Scoring is based on the one most clearly dominant plant species of the dominant form in each Low Marsh vegetation community. Check the appropriate Vegetation Group (see Appendix 16) for each Low Marsh community. Sum the areas of the communities assigned to each Vegetation Group and multiply by the appropriate size factor from Table 5.

Vegetation	Vegetation	Present	Total	Area	Score	Final
Group Number	Group Name	as a	Area	Factor		Score
		Dominant	(ha)			(area
		Form		(see		factor
		(check)		Table 5)		x score)
1	Tallgrass				6 pts	0.0
2	Shortgrass-Sedge				11	0.0
3	Cattail-Bulrush-Burreed	X	6.05	0.4	5	2.0
4	Arrowhead-Pickerelweed				5	0.0
5	Duckweed				2	0.0
6	Smartweed-Waterwillow				6	0.0
7	Waterlily-Lotus				11	0.0
8	Waterweed-Watercress				9	0.0
9	Ribbongrass				10	0.0
10	Coontail-Naiad-Watermilfoil				13	0.0
11	Narrowleaf Pondweed		_		5	0.0
12	Broadleaf Pondweed				8	0.0
_	Total Score (max	ximum 75 points	s)	·	·	2.0

١	Vorthern	Ontario	Wetland	Evaluation

(DATE)

Step 5: (**High Marsh**: area from the water line to the inland boundary of marsh wetland type. This is essentially what is commonly referred to as a wet meadow, in that there is insufficient standing water to provide fisheries habitat except during flood or high water conditions.)

High marsh not present (Continue to Step 6)

X High marsh present (Score as follows)

Scoring for Presence of Key Vegetation Groups

Scoring is based on the one most clearly dominant plant species of the dominant form in each High 1Marsh vegetation community. Check the appropriate Vegetation Group for each High Marsh community. Sum the areas of the communities assigned to each Vegetation Group and multiply by the appropriate size factor from Table 5.

Vegetation	Vegetation	Present	Total	Area	Score	Final
Group Number	Group Name	as a	Area	Factor		Score
		Dominant	(ha)	(see		(area
		Form		Table 5)		factor
		(check)				x score)
1	Tallgrass				6 pts	0.0
2	Shortgrass-Sedge				11	0.0
3	Cattail-Bulrush-Burreed				5	0.0
4	Arrowhead-Pickerelweed	X	82.52	1	5	5.0
	Total Score (ma	aximum 25 pe	oints)			5.0

Step 6: (**Swamp**: Swamp communities containing fish habitat, either seasonally or permanently. Determine the total area of seasonally flooded swamps and permanently flooded swamps containing fish habitat.)

X Swamp containing fish habitat not present (Continue to Step 7)
Swamp containing fish habitat present (Score as follows)

Swamp containing fish Habitat	Present (check)	Total	Area Factor		TOTAL SCORE
Парна	(CHECK)	area (ha)	(see Table 5)		(factor x score)
Seasonally flooded				10	0.0
Permanently flooded				10	0.0
SCOI	0.0				

Northern Ontario Wetland Evaluation	(I	DATE)			
Step 7: Calculation of final score					
Score for Spawning and Nursery Habitat (Low Marsh) (maximum 75)	= 2.0				
Score for Spawning and Nursery Habitat (High Marsh) (maximum 25)	= 5.0				
Score for Swamp Containing Fish Habitat (maximum 20)	= 0.0				
	n score 100 points) =	7			
4.2.7.2 Migration and Staging Habitat					
Step 1:					
1) Staging or Migration Habitat is not present in the wetland (Score	e = 0)				
2) Staging or Migration Habitat is present in the wetland significand to Step 2)	ce of the habitat is known (Go				
3) X Staging or Migration Habitat is present in the wetland significant (Go to Step 3)	ce of the habitat is not known				
NOTE: Only one of Step 2 or Step 3 is to be scored.					
Step 2: Select the highest appropriate category below, attach documentation					
1) Significant in Site Region	Score 25 points				
2) Significant in Site District	15				
3) Locally Significant	10				
4) Fish staging and/or migration habitat present,but not as above	5				
Score for Fish Migration and Staging Habitat (maximum	m score 25 points)	0			
Step 3: Select the highest appropriate category below based on presence (does not have to be dominant). Note name of river for 2) and 3).	of the designated site type				
1) X Wetland is riverine at rivermouth or lacustrine at rivermouth	Score 25 points				
2) Wetland is riverine, within 0.75 km of rivermouth	15				
Wetland is lacustrine, within 0.75 km of rivermouth	10				
4) Fish staging and/or migration habitat	5				
present, but not as above 5					
Score for Staging and Migration Habitat (maximu	um score 25 points)	25			

Northern Ontario Wetland Evaluation

(DATE)

4.3 ECOSYSTEM AGE

(Fractional Area = area of wetland type/total area of wetland)

	Area			Scoring
Bog	0.06	X	25 =	1.5
Fen, treed to open on deep soils				
floating mats or marl		X	20 =	0.0
Fen, on limestone rock		X	5 =	0.0
Swamp	0.89	X	3 =	2.7
Marsh	0.05	X	0 =	0.0
		Sub Total:		4.2

Fractional

Ecosystem Age Score (maximum 25 points)

4.4 GREAT LAKES COASTAL WETLANDS

Score for **coastal** (see text for definition) wetlands only

Choose one only

wetland < 10 ha 0 points wetland 10- 50 ha 25 wetland 51 -lOO ha 50 wetland > 100 ha 75

Great Lakes Coastal Wetlands Score (maximum 75 points)

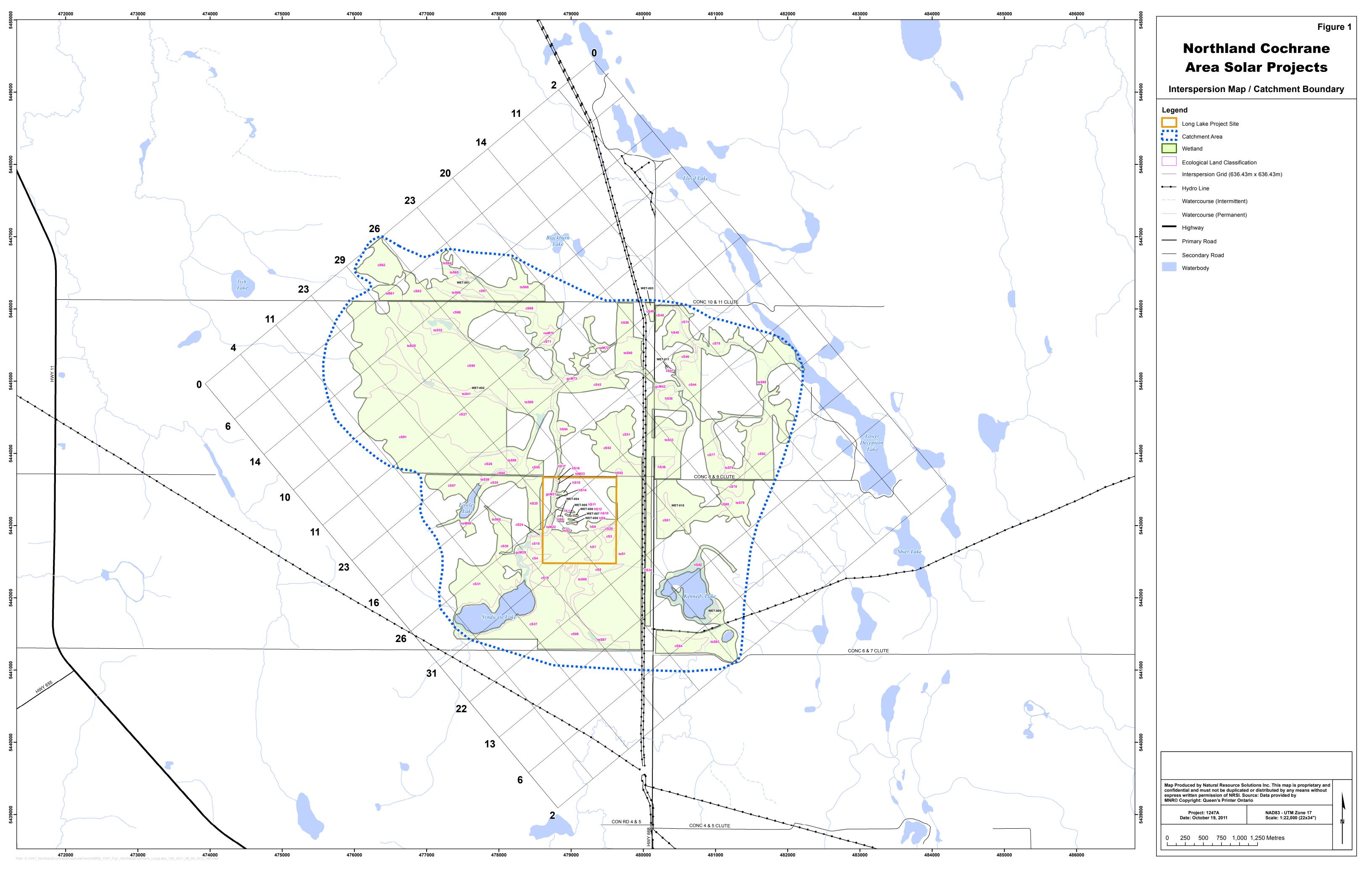
Northern Ontario Wetland Evaluation, Data and So	(DATE)		
5.0 EXTRA INFORMATION			
5.1 PURPLE LOOSESTRIFE			
X Absent/Not seen			
Present	(a)	One location in wetland Two to many locations	_
	(b)	Abundance code (1 < 20 plants (2 20-99 plants (3 100-999 plants (4 >1000 plants	
5.2 SEASONALLY FLOODED AREAS			
Indicate length of seasonal flooding Check one or more			
Ephemeral Temporal Seasonal Semi-permanent No seasonal flooding		(less than 2 weeks) (2 weeks to 1 month) (1 to 3 months) (>3 months)	<u>X</u>
5.3 SPECIES OF SPECIAL SIGNIFICANCE			
5.3.1 Osprey			
Present and nesting (attach map showing nest site) Known to have nested in last 5 yr Feeding area for osprey Not as above		X	
5.3.2 Common Loon			
Nesting in wetland (attach map showing nest site) Feeding at edge of wetland Observed or heard on lake or river adjoining the wetland Not as above		X	
	34		

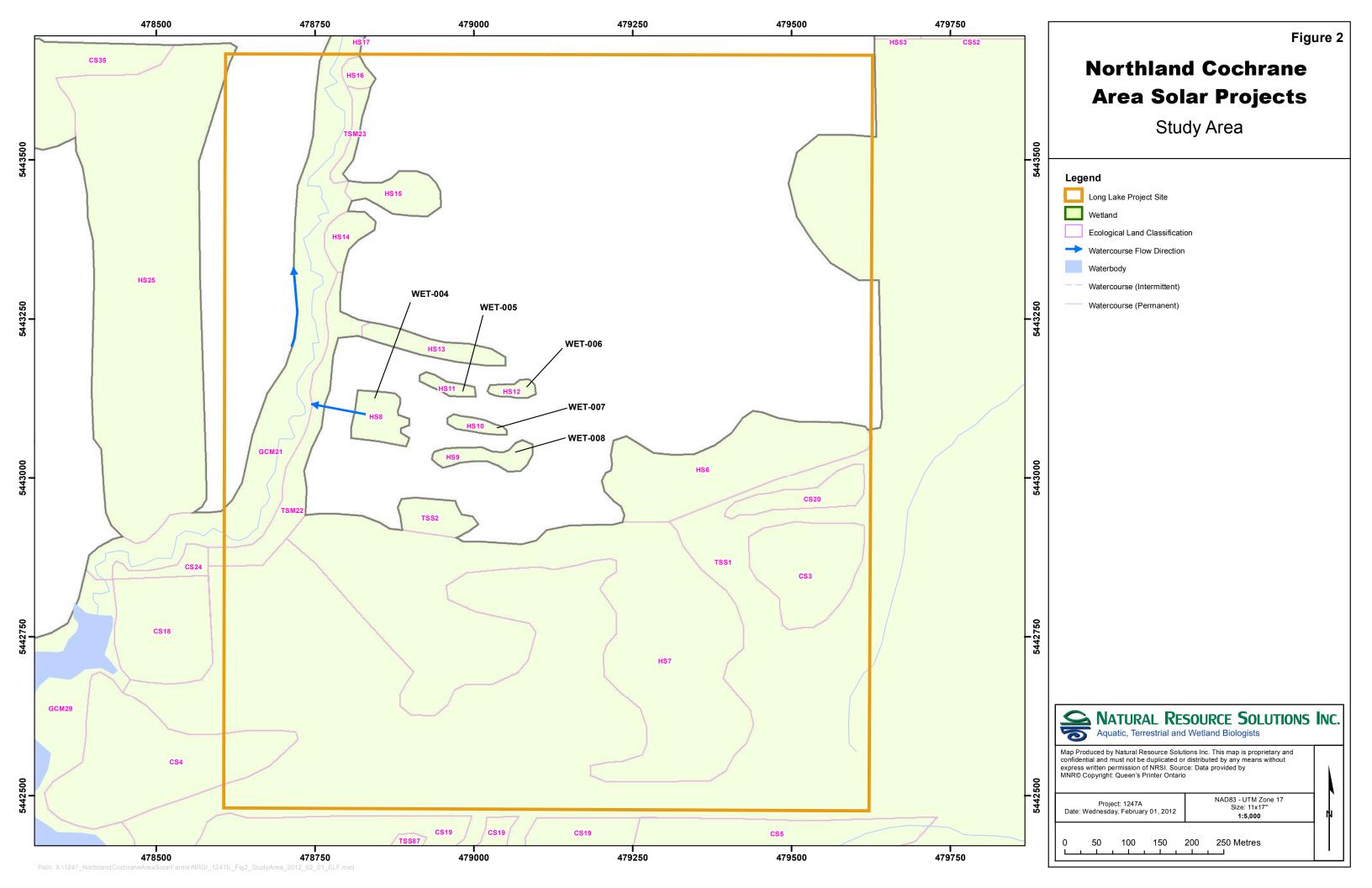
Northern Ontario Wetland Evaluation, Data and Scoring Record	(DATE)
INVESTIGATORS	AFFILIATION
David Stephenson	Natural Resource Solutions Inc.
Charlotte Moore	Natural Resource Solutions Inc.
Jessica Grealey	Natural Resource Solutions Inc.
Katharina Walton	Natural Resource Solutions Inc.
Megan Pope	Natural Resource Solutions Inc.
Tara Brenton	Natural Resource Solutions Inc.
DATES WETLAND VISITED	
June 23 and 24, 2011	
	_
DATE THIS EVALUATION COMPLETED:	October 18, 2011
DATE IIIIS EVALUATION COMPLETED.	October 10, 2011
ESTIMATED TIME DEVOTED TO COMPLETING THE FIELD S	SURVEY IN "PERSON HOURS"
18 hours	
WEATHER CONDITIONS	
i) at time of field work weather 16°C, 100% cloud of	cover, wind – Beaufort scale 1 to 2
weather 15°C, light rain, 100% cloud cover, wind – Beaufort scale 5, was	
weather 16°C, overcast, 100% cloud cover, wind – Beaufort scale 1	
, , ,	
ii) summer conditions in general spring: wet, cool; summer: hot	ı, dry
OTHER POTENTIALLY USEFUL INFORMATION:	
Surveys completed by Natural Resource Solutions Inc.:	
vegetation, breeding birds, nocturnal birds, anuran call surveys, bald eagl	e survey
	_
CHECKLIST OF PLANT AND ANIMAL SPECIES RECORDED IN TH	HE WETLAND:
Attach a list of all flora and fauna observed in the wetland.	
¥To disease if any other constitutions are shown because he was been also as he will be a larger than the constitution of the	and the
*Indicate if voucher specimens or photos have been obtained, where local	itea, etc.
35	

No	rthern Ontario Wetland Evaluation		(DATE)
	WETLAND I	EVALUATION SCORING RECORD	
WETLANI) NAME	Long Lake Wetland Compl	ex
	1.0 E	BIOLOGICAL COMPONENT	
1.1	PRODUCTIVITY		
1.1.2	Growing Degree-Days/Soils Wetland Type Site Type		14 8 2
		Total for Productivity	24
1.2	BIODIVERSITY		
1.2.2 1.2.3 1.2.4 1.2.5	Number of Wetland Types Vegetation Communities (maxixmu Diversity of Surrounding Habitat (n Proximinty to Other Wetlands Interspersion Open Water Type		20 11 7 8 30 8
1.3	Sub Total for Biodiversity SIZE (Biological Component)	Total for Biodiversity	50
<u>TOT.</u>	AL FOR BIOLOGICAL COMPONE	NT (not to exceed 250)	158

Northern Ontario Welland Evaluation	(DATE)
2.0 SOCIAL COMPONENT	
2.1 ECONOMICALLY VALUABLE PRODUCTS	
2.1.1 Wood Products 2.1.2 Lowbush Cranberry 2.1.3 Wild Rice 2.1.4 Commercial Fish 2.1.6 Furbearers	14 0 10 12 9
Total for Economically Valuable Products	45
2.2 RECREATIONAL ACTIVITIES (maximum 80)	16
2.3 LANDSCAPE AESTHETICS	
2.3.1 Distinctness 2.3.2 Absence of Human Disturbance	0 4
Total for Landscape Aesthetics	4
2.4 EDUCATION AND PUBLIC AWARENESS	
2.4.1 Educational Uses 2.4.2 Facilities and Programs 2.4.3 Research and Studies (maximum 12)	0 0 0
Total for Education and Public Awareness	0
2.5 PROXIMITY TO AREAS OF HUMAN SETTLEMENT	8
2.6 OWNERSH1P Subtotal for Social Component 2.7 SIZE (Social Component)	18
2.8 ABORIGINAL AND CULTURAL VALUES (maximum 30)	0
TOTAL FOR SOCIAL COMPONENT (not to exceed 250)	95

Northern Ontario Wetland Evaluation, Score Summary	(DATE)
3.0 HYDROLOGICAL COMPONENT	
3.1 <u>FLOOD ATTENUATION</u>	90
3.2 <u>GROUNDWATER RECHARGE</u>	
3.2.1 Site Type 3.2.2 Soils	<u>18</u> 7
Total for Groundwater Rec	charge 25
3.3 <u>WATER QUALITY IMPROVEMENT</u>	
3.3.1 Watershed Improvement Factor3.3.2 Adjacent and Watershed Land Use3.3.3 Vegetation Form	30 19 8
Total for Water Quality Im	provement 57
3.4 <u>CARBON SINK</u>	6
3.5 SHORELINE EROSION CONTROL	8
3.6 <u>GROUNDWATER DISCHARGE</u>	29
TOTAL FOR HYDROLOGICAL COMPONENT (not to	exceed 250) 215
I	l


Northern Ontario Wetland Evaluation, Score Summary	(DATE)
4.0 SPECIAL FEATURES	
4.1 <u>RARITY</u>	
4.1.1 Wetlands	40
7.1.1 Wettalius	40
4.1.2 Species	
4.1.2.1 Endangered or Threatened Species Breeding	0
4.1.2.2 Traditional Use by Endangered or Threatened Species	150
4.1.2.3 Provincially Significant Animals	0
4.1.2.4 Provincially Significant Plants	<u>0</u> 40
4.1.2.5 Regionally Significant Species4.1.2.6 Locally Significant Species	0
4.1.2.7 Species of Special Status	0
Total for Species Rarity	190
4.2. CICNIEICANT EEATUDES OD HADITAT	
4.2 <u>SIGNIFICANT FEATURES OR HABITAT</u>	
4.2.1 Colonial Waterbirds	0
4.2.2 Winter Cover for Wildlife	0
4.2.3 Waterfowl Staging and Moulting	20
4.2.4 Waterfowl Breeding	10
4.2.5 Migratory Passerine, Shorebird or Raptor Stopover	0
4.2.6 Ungulate Habitat	25 32
4.2.7 Fish Habitat	32
Total for Significant Feature	es and Habitat 87
4.3 <u>ECOSYSTEM AGE</u>	4
4.4 GREAT LAKES COASTAL WETLANDS	0
ORDAN BANKES CONSTRE WEIGHTANDS	0
	Subtotal: 321
	220)
TOTAL FOR SPECIAL FEATURES (maximu	<u>im 250)</u> <u>250</u>


North	ern Ontario Wetland Evaluation, Score Summa	ry	(DATE)
	SUMMARY OF EV	ALUATION RESULT	
Wetland	Long Lak	e Wetland Complex	
	-	o would complex	1.50
TOTAL FO	OR 1.0 BIOLOGICAL COMPONENT		158
TOTAL FO	OR 2.0 SOCIAL COMPONENT		95
TOTAL FO	OR 3.0 HYDROLOGICAL COMPONENT		215
TOTAL FO	OR 4.0 SPECIAL FEATURES COMPONENT		250
		WETLAND TOTAL	717
		WEILAND IOIAL	/1/
INVESTIC			
	David Stephenson Charlotte Moore		
	Jessica Grealey		
	Katharina Walton		
	Megan Pope		
AFFILIAT			
	Natural Resource Solutions Inc.		
	Natural Resource Solutions Inc.		
	Natural Resource Solutions Inc.		
	Natural Resource Solutions Inc.		
	Natural Resource Solutions Inc.		_
<u>DATE</u>	February 1, 2012		
			ļ
			ļ

Species Observed		Vegetation Survey	Amphibian Survey	Breeding Bird Survey	Nocturnal Bird Survey	Eagle Survey
Amphibians & Reptiles						
American toad	Bufo americanus					Х
Green frog	Rana clamitans melanota			Х		
Mink frog	Rana septentrionalis			Х		Х
Spring peeper	Pseudacris crucifer crucifer		Х		Х	Х
Wood frog	Rana sylvatica	(Repor	rted by	Hatch)		
Birds			1			1
Alder flycatcher	Empidonax alnorum			Х		
American bittern	Botaurus lentiginosus	Х				
American crow	Corvus brachyrhynchos			Х		Х
American goldfinch	Carduelis tristis			Х		Х
American kestrel	Falco sparverius			Х		Х
American redstart	Setophaga ruticilla					Х
American robin	Turdus migratorius	Х		Х		Х
Barn swallow	Hirundo rustica			Х		
Black and white warbler	Mniotilta varia	Х		Х		
Blue-headed vireo	Vireo solitarius			Х		
Canada Goose	Branta canadensis			Х		
Chipping sparrow	Spizella passerina	Х		Х		Х
Common loon	Gavia immer			Х		Х
Common yellowthroat	Geothlypis trichas			Х		Х
Conneticut warbler	Oporornis agilis			Х		
European starling	Sturnus vulgaris			Х		
Hermit thrush	Catharus guttatus			Х		
Mallard	Anas platyrhynchos			Х		
Mourning warbler	Oporornis philadelphia			Х		
Nashville warbler	Vermivora ruficapilla			Х		
Northern flicker	Colaptes auratus			Х		
Nothern harrier	Circus cyaneus			Х		
Ovenbird	Seiurus aurocapillus			Х		
Red-eyed vireo	Vireo olivaceus					Х
Red-winged blackbird	Agelaius phoeniceus					Х
Ruffed grouse	Bonasa umbellus			Х		
Sandhill crane	Grus canadensis			Х		
Song sparrow	Melospiza melodia	Х		Х		
Tennesee warbler	Vermivora peregrina			Х		
Tree swallow	Tachycineta bicolor					Х
Veery	Catharus fuscescens			Х		
Vesper sparrow	Pooecetes gramineus			Х		
White-throated sparrow	Zonotrichia albicollis			Х	Х	Х
Wilson's snipe	Gallingo delicata			Х		
Woodpecker sp.				Х		
Yellow-rumped warbler	Dendroica coronata			Х		
Yellow warbler	Dendroica petechia			Х		

Species Observed		Vegetation Survey	Amphibian Survey	Breeding Bird Survey	Nocturnal Bird Survey	Eagle Survey
Butterflies						
Canadian tiger swallowtail	Papilio canadensis	Х				
Dragonflies and Damselflies						
Bluet sp.						Х
Darner sp.						Х
Mammals						
Beaver	Castor canadensis					v
Black bear		+				Х
Deer Deer	Ursus americanus	X		.,		
Moose	Odocoileus virginianus Alces alces			X		
Red fox				X		Х
Snowshoe hare	Vulpes vulpes Lepus americanus			X		
Showshoe hare	Lepus americanus			Χ		
Vegetation						
Alder-leaved buckthorn	Rhamnus alnifolia	Х				
Aquatic sedge	Carex aquatilsis	Х				
Awl-fruited sedge	Carex stipata	Х				
Balsam poplar	Populus balsamifera ssp. balsamifera	Х				
Bird's-foot trefoil	Lotus corniculatus	Х				
Black spruce	Picea mariana	Х				
Bluebead-lily	Clintonia borealis	Х				
Bog laurel	Kalmia polifolia	Х				
Bottlebrush sedge	Carex hystericina	Х				
Bunchberry	Cornus canadensis	Х				
Canada blue-joint	Calamagrostis canadensis	Х				
Northern reindeer lichen	Cladina stellaris	Х				
Club moss sp.	Lycopodiaceae sp.	Х				
Common cattail	Typha latifolia	Х				
Common dandelion	Taraxacum officinale	Х				
Creeping snowberry	Gaultheria hispidula	Х				
Dark-green bulrush	Scirpus atrovirens	Х				
Early meadowrue	Thalictrum dioicum	Х				
European moutain-ash	Sorbus aucuparia	Х				
Forget-me-not	Myosotis sp.	Х				
Fox sedge	Carex vulpinoidea	Х				
Labrador-tea	Ledum groenlandicum	Х				
Lady fern	Athyrium filix-femina	Х				
Low bush blueberry	Vaccinium angustifolium	Х				
Marsh-marigold	Caltha palustris	Х				
Meadowsweet	Filipendula ulmaria ssp. ulmaria	Х				
Moss sp.		Х				
Pale jewelweed	Impatiens pallida	Х				
Path rush	Juncus tenuis	Х				
Peat moss	Sphagnum sp.	Х				
Purple-stemmed aster	Symphyotrichum puniceum	Х				

Species Observed		Vegetation Survey	Amphibian Survey	Breeding Bird Survey	Nocturnal Bird Survey	Eagle Survey
Raspberry	Rubus sp.	Х				
Red clover	Trifolium pratense	Х				
Red currant	Ribes rubrum	Х				
Red osier dogwood	Cornus stolonifera	Х				
Red raspberry	Rubus idaeus ssp. idaeus	х				
Sheep laurel	Kalmia angustifolia	Х				
Sheep sorrel	Rumex acetosella	Х				
Speckled alder	Alnus incana spp. rugosa	Х				
Tall buttercup	Ranunculus acris	х				
Tamarack	Larix laricina	х				
Trembling aspen	Populus tremuloides	х				
Tufted vetch	Vicia cracca	Х				
Willow species	Salix species	х				
Wood horsetail	Equisetum sylvaticum	Х				
Woodland strawberry	Fragaria vesca ssp. americana	Х				
Yellow avens	Geum aleppicum	Х				
Yellow pond-lily	Nuphar advena	Х				
Yellow sedge	Carex flava	Х				

Long Lave Site 中1247 Cochrane Solar Farm Ine 23, 11 ObJ. JEG, MP 10°C, avercast, wind=1 LOWES / BREEDING BILDS) - Conducted OWES mapping & breed birds throughout property (0530.0915hrs) - General six photos -270,271,285, 286,292,293 (Jto's camua - Generally the sit is very wet all habitads that and plough field wetland ne pocials of poplar regen where soils are wetten - very distribuce EAGLE SUKU EUS -90% clady, 20°C, 09:20 hrs - Kennedy Lake wind S(E) -30min point count done from road -photo 295 - Shoreline scanned for large stick nests-more obs. - Incidentals: - Common Lucin - American Rolom - Red-eyed Unico -spring puper - Am. Goldfreh - beaver hut north end of law white-threated sparred - Fish smood in water -Tree Swallow - MINK Frig - American (raw - Reducing blackbird - No Eagls or other rapitors obs. Pg. 1013

- restrators when got in can.

Can. Tiger Swallow tail

Black bear obs. (hydro comder along 6/7)

Chipping Sparran

AM. Robin

black & white workler.

American bittern (Smith Check)
Stick nest N. of con 8/9 on hydro comider

Song Sparraw

Photos

- #299 hydro comider

-locus dier than suranding lands-

-grasses in scattered conifers, raspony

- +300- Smith creek facing East

-#301 - smitt creek feeing west

-\$302- creek flowing through polygen 8

- drainge distribus on both sides

of road but creen does

ret cross road pg 3013

-30 min pl. count for Eagls

- photo - 296 - had to do pant cant from sidge marsh - bist

vantage pt.

- Scanned for Stick nexts - hand

obs.

Incidental S

- white - throated Sparraws

Am. Toad

- tresh moose sent i tracus

-Am. Redstart

-chipping 5 purrow

- minu Frug

· Common yellowthrat

- led-ayed viveo

- Am. Rubin

- bluet sp. (northem?)

-damer sp.

song sparrow

- Am. Goldfind

- No eagles or other raptors

Pg 2-13

TSSqq + SSq1+5Sq3 + SSG9 + SSG0 + SSq2+5Sq3+5SG9 + SSG8 + SSG7+5SG9 + SSG5-53

	•
NATURA Armatic Terre	L RESOURCE SOLUTIONS INC. Transline Inc.
Addate Tene	+ Sof
Wetland Vegetation Co	
Project Name: Cochrane	Solar Fura Project #: 1247 + 5532
Observer(s): J.B. M.P.	
Date: June 23/11	Time (24h): 0700
Field #:	Weather: Precipitation: Name Temp (°C): 16
Map Code: \	Wind Speed & Direction: \ NF Cloud %: 100
Wetland Type: Swame	Site Type: P Dominant Form: Tall Shrub
% Open Water: 5%	ELC Code: 155, 1552, 15533, 15540
Photos: 272-273 (316)	CAMERON) 276 (South ena) TRENS LINE 155, - 1550V
	Species (dominant species, secondary species, present
Forms % (Circle those ≥25%)	species) IsSa.~ tsSio
h Balsam Popler; to	
C Black Sprice: 7	amaracu (10%) + POR MUST 20-25% in Some areas in
dc,dh,ds black spruce	
	willows, protons (90%)
Is Faspberny, willow	i trembling Aspen, red oster dogwood labor
1/gc tall butter cup; ma	ish manisolar stranberry; yellaw aren's dance
ne Canada bhd jai	at side so park nust
be _/	La ARA bristly sence.
re common contrals	7
ff	b AKA: broad-leaved nuttail.
f	
su	
m mass and clubyhod.	
Soil type:	Silta Class Organic Mineral W
Rare Species (Local, Region Provincial):	Mosse traces
Trovincialy.	TOBSE IT ALL W. S
1	
SAR observations must also i	nclude a specific UTM location.
•	erous trees; dh, dc, ds=dead trees/shrubs; ts=tall shrubs; ls=low shrubs;
gc=ground cover; ne=narrow emerg su=submerged plants; m=mosses	ents; be=broad emergents; f=floating plants; ff=free-floating plants,
Wetland Type: S=swamp; M=marsh	n; B=bog; F=fen
Site Type: L=lacustrine; P=palustrin	e; R=riverine; IS=isolated
Soil type: cl=clay/loam; sl=silt/loam	; I=limestone; s=sand; hm=humic/mesic; f=fibric; g=granite Organic= >60cm

depth over mineral (>10cm over bedrock)Mineral= <60cm depth over mineral

NATURA Aquatic, Terre	L RESOURCE SOLUTIONS INC.
Wetland Vegetation Co	ommunities
Project Name: Cochrane	Solar From Project #: 1247
Observer(s): JFD. MP	
Date: Time 23/11	Time (24h): 0(000
Field #:	Weather: Precipitation: None Temp (°C): 16°C
Map Code: 2	Wind Speed & Direction: Cloud %;
Wetland Type: Swamp	Site Type: D Dominant Form: Conserous Trees
% Open Water: ≤ °/₀'	ELC Code: 53-63, 526, 522 841
Photos: 274-2757,277	I south and cost TRANSUNE Costo, Sia, Com
Forms % (Circle those >25%)	Species (dominant species, secondary species, present
Forms % (Circle those >25%)	species) (825 - CB24
h_1	(2011) 10
C Black Spruce; Tar	maracia (90%) Roadside mapping.
dc,dh,dsts_special Aldur;	(151) (Bay, (1545, (1546, (1555)
1s labradan tais	perulad alding excepting stoubing (50%)
gc blue brad lily, woods	and horseten!; bunchberry (25%)
ne	
be	
re	
ff	
f	
su /	school lichen (90%)
m Reat moss (90%); (1	
Soil type: Rare Species (Local, Regio	oracinic Organic Mineral oracinic Mineral will Mineral oracinic Mineral oracini Mineral oracinic Mineral oracini Mineral oracini Mineral oraci
Provincial):	mai, , within Notes.
SAR observations must also i	nclude a specific UTM location.
The state of the s	erous trees; dh, dc, ds =dead trees/shrubs; ts =tall shrubs; ls =low shrubs; ents; be =broad emergents; f =floating plants; f f=free-floating plants;
Wetland Type: S=swamp; M=marsh	n; B=bog, F=fen
Site Type: L=lacustrine; P=palustrin	e; R=riverine; IS=isolated
	; I=limestone; s =sand; hm =humic/mesic; f =fibric; g =granite Organic = >60cm rock) Mineral = <60cm depth over mineral

Note: organic hummocks raised above water - tayer of organic fabric soils overlaying sandy Clay (see diagram on Lech

	AL RESOURCE SOLUTIONS INC. restrial and Wetland Biologists
Wetland Vegetation C	ommunities
Project Name: Cochrane	Sular Farm Project #: 1247
Observer(s): づせし、ドア	
Date: June 23/11	Time (24h): 0045
Field #:	Weather: Precipitation: None Temp (°C): 17°と
Map Code: 3	Wind Speed & Direction: Cloud %: 100
Wetland Type:	Site Type: P Dominant Form: decideous was
% Open Water:	ELC Code: hS, -hS, hS34 hS36, hS22 hEig
Photos: 278-280	1539 17 LSSO, 1555, 1854
Forms % (Circle those >25%)	Species (dominant species, secondary species, present
	pulsam peplan (95%)
c Brack Sprice (5%)) \
	contain is h - shap lain
	d osier deawood alder leaved beerthern indeen
ac stan be mai blue be	act long, when being prove sta Aster College (85
ne Canada Www.cint	(7%) sides so, (20%) - 1000 strain
be /	TOTAL SOLL SOLL TOUR STREET
**************************************	leval
ff /	
f /	
su	
m_m/055_5	
Soil type:	Organic Mineral
Rare Species (Local, Regi	onal, Wildlife Notes:
Provincial):	
1	1
SAR observations must also	include a specific UTM location.
	ferous trees; dh, dc, ds=dead trees/shrubs; ts=tall shrubs; ls=low shrubs;
	gents; be=broad emergents; f=floating plants; ff=free-floating plants;
su=submerged plants; m=mosses	
Wetland Type: S=swamp; M=mars	
Site Type: L=lacustrine; P=palustri	
	n; I=limestone; s =sand; hm=humic/mesic; f=fibric; g=granite Organic= >60cm drock)Mineral= <60cm depth over mineral

Regenerating Poplar Community

Wetland Vegetation Communities

regulation of	/iiiiidiiide3
Project Name:	Project #: 1247
Observer(s): JHO MP	
Date: June 23, 2011	Time (24h): 0725
Field #:	Weather: Precipitation: Nc~ Temp (°C): √C
Map Code: Д	Wind Speed & Direction: 3 2 as + Cloud %: 100
Wetland Type: Bug Sugard	Site Type: P Dominant Form: Conferous Trus
% Open Water: 🔿 🤻	ELC Code: 518 519, 580
Photos: 281-282	
Forms % (Circle those ≥25%)	Species (dominant species, secondary species, present species)
h Trembline Ageen (10	*/*)
CBLOCK BAUGE (10-95%
dc,dh,ds	4:
ts willaw specific	alder (1996)
Is laboradon ten; red	current; law bushblue bery (15%)
go woodland horse ted	banchberry (10%)
ne	ć
be	
re	
ff	
f	
su	
m - Read moss (98%)	-Samt to 2 Organic V Mineral I
Soil type: Rare Species (Local, Region	Organio A Ministal
Provincial):	mai, whiting notes.
SAR observations must also	include a specific UTM location.
	erous trees; dh, dc, ds=dead trees/shrubs; ts=tall shrubs; ls=low shrubs; ents; be=broad emergents; f=floating plants; ff=free-floating plants;
Wetland Type: S=swamp; M=marsi	n; B=bog; F=fen
Site Type: L=lacustrine; P=palustrin	ne; R=riverine; IS=isolated
	i; I=limestone; s=sand; hm=humic/mesic; f=fibric; g=granite Organic= >60cr drock)Mineral= <60cm depth over mineral

*Same as a but dominated entirely by black Spruce open areas have popla.

S NATURA Aquatic, Terre	AL RESOURCE SOLUTIONS INC. estrial and Welland Biologists
Wetland Vegetation Co	ommunities
Project Name: Cocker	Project #: 1247
Observer(s): づぜいいア	
Date: June 23/11	Time (24h): 0815
Field #:	Weather: Precipitation: Temp (°C): 17 ^a
Map Code: 5	Wind Speed & Direction: 3-A East Cloud %: 100
Wetland Type: Mass k	Site Type: R Dominant Form: granuncials
% Open Water:	ELC Code: 9c M21, 9c/42 2011- Color Som Som
Photos: 253,284,287	,290 (from rd facing N.), 289 - colourt (N. et al road)
Forms % (Circle those <u>></u> 25%)	Species (dominant species, secondary species, present species)
h	
c	
dc,dh,ds	
ts specified exists bal	sam peplar, willow
Is warm red cas	sury medanticet undource
R gc Field horse deal biro	shappy medantiment red clay from the
ne Canada bucidat	Agustic Sedge (collection) for Endry
be /	
re Common catton) d	hark aren bulash
ff	3
f yellow and lify	
su	
m	Louis VI Mineral VI
Soil type:	onal: Organic Mineral
Rare Species (Local, Region Provincial):	- Il Si calpa i
Frovincial).	snapping that habitat present but not o
1	063.
SAR observations must also	include a specific UTM location.
Forms: h=deciduous trees; c=conif	erous trees; dh, dc, ds=dead trees/shrubs; ts=tall shrubs; is=low shrubs;
	gents; be=broad emergents; f=floating plants; ff=free-floating plants;
su=submerged plants; m=mosses	
Wetland Type: S=swamp; M=mars	
Site Type: I =lacustrine: P=nalustri	ne: R=riverine: IS=isolated

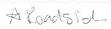
Note-same all around syndicate law - 2 Swith end alder over thicken

depth over mineral (>10cm over bedrock)Mineral= <60cm depth over mineral

Soil type: cl=clay/loam; sl=silt/loam; l=limestone; s=sand; hm=humic/mesic; f=fibric, g=granite Organic= >60cm

Wetland Vegetation Communities

Project Name: Jet, MP	Project #: 1247
Observer(s): JOD MP	
Date: June 28/11	Time (24h): 0% 10
Field #:	Weather: Precipitation: Now. Temp (°C): ♥¬°C
Map Code: 6 Morsh	Wind Speed & Direction: 4 - cast Cloud %: 100
Wetland Type:	Site Type: K Dominant Form: Tall Should S
% Open Water: O//	ELC Code: +s M 22, +s M23
Photos: 288	
Forms % (Circle those ≥25%)	Species (dominant species, secondary species, present species)
1 Trambline Aspen; by	alsom poly (5%)
dc,dh,ds	
is specified alder.	villand (90%)
s Red rasplany mea	dowswest (50%): Willaws
Jo meadow ove, you wellow	w are S pale revelwed, (40%) fold here to
ne canada Gurgant; 1	Pux storce (5%) do
pe /	
re /	
f /	
1	
su <u>/</u>	
m <u>//</u>	
Soil type:	Organic Mineral
Rare Species (Local, Region	
Provincial):	Deer tracks
NAP observations must also i	
	include a specific UTM location.
Forms: h=deciduous trees; c=conife	erous trees; dh, dc, ds=dead trees/shrubs; ts=tall shrubs; ls=low shrubs;
Forms: h=deciduous trees; c=conife	
Forms: h=deciduous trees; c=conife gc=ground cover; ne=narrow emerg	erous trees; dh, dc, ds=dead trees/shrubs; ts=tall shrubs; ls=low shrubs; lents; be=broad emergents; f=floating plants; ff=free-floating plants;


Rigarian edge.

Roodside mapping cools

* should be hS (not 1-15)

	AL RESOURCE SOLUTIONS INC. estrial and Wetland Biologists
	a a
Wetland Vegetation Co	ommunities
	Solan Fam Project #: 1247
Observer(s):	
Date: June 23/11	Time (24h): 0900
Field #:	Weather: Precipitation: None Temp (°C): 19°C
Map Code: ユ	Wind Speed & Direction: ろ(E) Cloud %: 幻る
Wetland Type: Swamp	Site Type: P Dominant Form: Mixed Time to
% Open Water: O	ELC Code: has Say, has see, has say, has no hes
Photos: 294 (fran Ed	Lge) 208 hrs335, ht S37, hasus, hasus, has
Forms % (Circle those >25%)	Species (dominant species, secondary species, present 43 species)
	Balsan Poplar (60%) - Sew tamanacy &
c Black 3 pace 150-	
dc,dh,ds Ponars son	
	trembling Asser (90%)
Is aldiantegized back	thorn red current (SUI)
	un fein strawberry burkberry lady feinte
ne \$6dse 50. (21%)	, , , , , , , , , , , , , , , , , , , ,
be /	
re /	
ff /	
f /	
su /	
m_moss s, (5%)	
Soil type:	Situ Isam (ISon) Organic Mineral
Rare Species (Local, Region	onal, Wildlife Notes:
Provincial):	
SAR observations must also	include a specific UTM location.
	ferous trees; dh, dc, ds=dead trees/shrubs; ts=tall shrubs; Is=low shrubs;
	gents; be =broad emergents; f =floating plants; ff =free-floating plants;
su=submerged plants; m=mosses	g-114,
Wetland Type: S=swamp; M=mars	sh; B=bog; F=fen
Site Type: L=lacustrine; P=palustri	ne; R=riverine; IS=isolated
	n; I=limestone; s =sand; hm =humic/mesic; f =fibric; g =granite Organic= >60cm
depth over mineral (>10cm over bed	drock)Mineral= <60cm depth over mineral

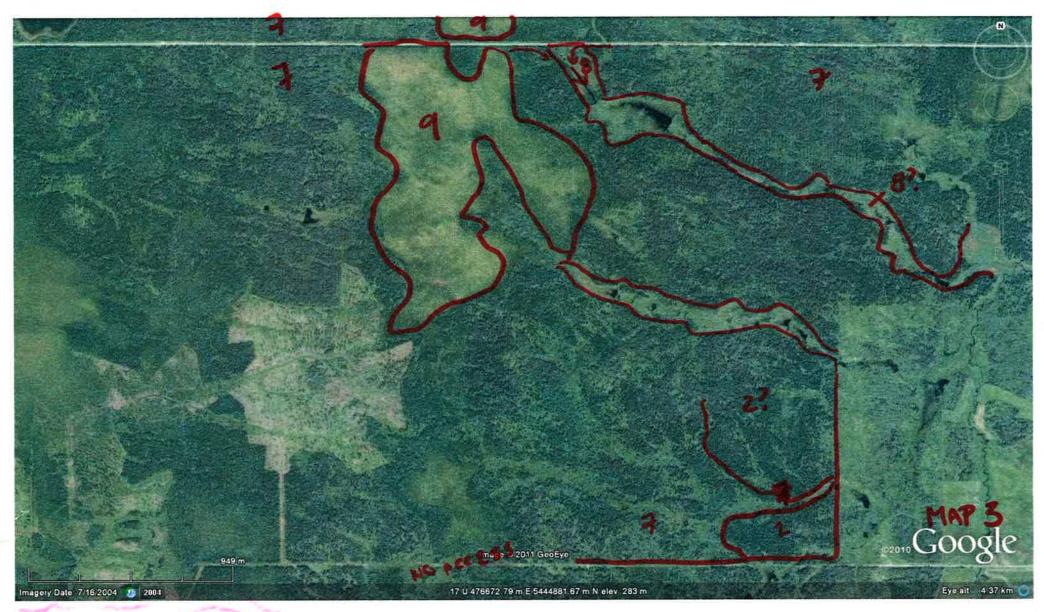
NATURA Aquatic Terro	AL RESOURCE SOLUTIONS INC. estrial and Welland Biologists
Wetland Vegetation Co	ommunities
	Solar Farm Project #: 1247
Observer(s): ゴは、Mア	
Date: Juv 23,2011	Time (24h): 1200
Field #:	Weather: Precipitation: محمد Temp (°C): م
Map Code: 🥱	Wind Speed & Direction: 4 – € Cloud %: 100
Wetland Type: Swamp	Site Type: R Dominant Form: Tail Shalb
% Open Water: 10 / /	ELC Code: +5S +5S41
Photos: 303	32
	Species (dominant species, secondary species, present
Forms % (Circle those ≥25%)	species)
h white birch (2%)	(a) (
C Tamarack, black	spwce (5°1-)
dc,dh,ds birch (1/-)	
ts Speculid Aldn;	w.11cm 3 (96%)
is special Alan;	willows; red osier Log Word; labrada tea (8
gc Aquatic ne Salacia Hi	(a.d.)
0 /	Eyer (80%)
be	2 7237 8
re day gren below	sh (2%)
π	
su /	
m /	
Soil type:	Silha clay Organic Mineral X
Rare Species (Local, Region	
Provincial):	
	include a specific UTM location.
	ferous trees; dh, dc, ds=dead trees/shrubs; ts=tall shrubs; Is=low shrubs; gents; be=broad emergents; f=floating plants; ff=free-floating plants;
Wetland Type: S=swamp; M=mars	h; B=bog; F=fen
Site Type: L=lacustrine; P=palustrii	ne; R=riverine, IS=isolated
	n; I=limestone; s =sand; hm =humic/mesic; f =fibric; g =granite Organic= >60cm drock) Mineral= <60cm depth over mineral

Wetland Vegetation Communities

Project Name: Cochrone	Solar Fare	Project #: \247				
Observer(s): イビットア						
Date: June 23/11	Time (24h): 12.31					
Field #: /	Weather: Precipitation: Adams Temp (°C): 26					
Map Code: ရ	Wind Speed & Direct	tion: 4 East Cloud %: \GO				
Wetland Type: Boa	Site Type: 17	Dominant Form: In show				
% Open Water:	ELC Code: 5328					
Photos: 304, 305	Rogerick Mappine	15 Bp. 15 Buo. 15 Bup, 15 Bus 15 Bus				
Forms % (Circle those ≥25%)		ant species, secondary species, present species)				
h _/		15 B38, 15 B76, 15 B68.				
c Tamaracu Waru	some (15%)	15 13 70, 15 15 15 15 15 18 48				
dc,dh,ds Sarvce (2%)		15 B49				
	york (20%)	1 . 10				
1s labradon tea; sh	eis smel;	low bush bluebenny (80%)				
gc lanada marflower	1					
ne /						
be /						
re _/						
ff /						
f						
su _/						
m Prad moss (98%)						
Soil type:	organic	Organic Mineral				
Rare Species (Local, Regi	-100 MOC 00	Wildlife Notes:				
Provincial):	2	* 4				
SAR observations must also	include a specific UT	M location.				
		dead trees/shrubs; ts=tall shrubs; ls=low shrubs;				
gc=ground cover; ne=narrow emerg	jents; be =broad emergen	ts; f=floating plants, ff=free-floating plants;				
su=submerged plants; m=mosses						
Wetland Type: S=swamp; M=mars	n; B=bog; F=fen					
Site Type: L=lacustrine; P=palustrin						
		m=humic/mesic; f=fibric; g=granite Organic= >60cn				
depth over mineral (>10cm over bed	Irock) Mineral = <60cm de	epth over mineral				

MAP #1-1247. COchrane Solar Fair - Leng all Vig Maying

Map 2-1247 - cochrane Solar fain June 23, 2011 - JEO, MP - OWES, UG mapping



Map 3 - June 23,2011 - JEG, MP ±12A7 - Cochrane Solan Farm

MAP 4 - June 23, 2011 - JEG, MP +1247 - Cochrane Sclan Fam

Natural Resource Solutions Inc.							
10	Plant Specimen Voucher						
Project Name:	Name: (uchrane S.F						
Project #	1247						
Species:	Carex a	quatilis (Agi	vati sidy)				
Collector:	JEG						
Date:	June 2	3,2011					
UTM:	June 23, 2011 Polygen = 5						
Habitat:	Sidge Marsh also collected June 22/11 by JED in polygon I						
Notes:	Notes:						
Photo #							
		ocessing					
Sample ID	Pressed	Discarded	Filed Herbarium				
polygen 5		Χ.					

[t]

ï

	Natural Res	source Solutions	Inc.			
	Plant Sp	ecimen Vouch	er			
Project Name:	Cochrar	u S.F				
Project #	1247					
Species:	carex	flora				
Collector:	JEG					
Date:	June 2	June 24, 2011				
UTM:	polygen F					
Habitat:	Narrow leaved energent marsh					
Notes:						
Photo #						
0		ocessing	I = 1			
Sample ID Sidge sp. polycycn F	Pressed	Discarded	Filed Herbarium			

Natural Resource Solutions Inc.						
Plant Specimen Voucher						
Project Name:	Cochran	(ochrane S.F.				
Project #	1247					
Species:	carex h	istericina ikis				
Collector:	JLL					
Date:	June 2	7,2011				
UTM:	June 27,2011 polygion C					
Habitat:	Tall show swamp.					
Notes:						
Photo #						
.00		ocessing				
Sample ID	Pressed	Discarded	Filed Herbarium			
sidge Sp. polygun C.		X				

Breeding Bird Area Search Observation Form NATURAL RESOURCE SOLUTIONS INC. Page ___ of ___ Date: Project: Cochrane 1247 June 23, 11 Time: Location: 0530-0900 Laho Long UTM: Observers: MJP, JEG Temperature (°C) Cloud Cover (%): Other Site Conditions/Survey Limitations: 100 70 Wind (Beaufort): 1-2 Precipitation none Survey: Visit POLYGON NUMBERS - Record # & evidence by polygon Species 75 Hermit Thrush 88 Arm Robin 85 White throated Door Blue headed Vireo Chipping Spartow common yellow throat 45 Alder Flycatcher 55 85 Amr Crow 35 Vecry Vellow Warbler 25 Sandhill Crove 2578 1 Drymmen Woodbacker So B: W Warbler 35 Conneticut Worlde 15 N. Flicker 45+00 35 Mashville Worbler Mauring warpler 15

Drymmery Ruffred Growsk 1 4 Amr Kestre 3 H Rorn Swallow E Starlings Yellow rumper warbler 20 H Beaufort Wind Scale Breeding Evidence Codes Photos: 0 - Calm 9 - light structural damage Probable Observed Confirmed X - No evidence of breeding DD - Distraction display 1 - smoke drifts 10 - trees uprooted 2 - wind felt on face T - Permanent territory NU - Used nest or egg shell FY - Fledged young 3 - leaves in motion D - Courtship or display Possible H - Suitable nesting habitat V - Visiting prob nest site AE - Adults at occupied nest 4 - small branches move S - Singing mate A - Agitated behaviour or anxiety calls FS - Faecal sac 5 - small trees sway 6 - large branches move B - Brood patch/cloacal protuberance CF - Carrying food 7 - whole trees in motion N - Nest building or excavation NE - Nest containing eggs NY - Nest with young 8 - twigs break off, hard to walk

otes: Moose (tracks), snowshoe have

VESOEV Sparrows

Northern Harrier

Wilson's snipe Tennesiee Worbler Common Loop Ownbird

Mallard

Sang Sparraw

Amer Goldfin-b

Canada Goose

. Fox (tracks, Scart)

Deer (scat), snag damage evidence (pileated?)

Green frog, Mink frod

15 2P

Nocturnal Bird Survey Form	Project: Cochrane Solar Farm - Long Lake.
	Project #: 1247
Date: Jone 24/11	Cloud Cover (%): \OO
Observer(s): JCb, MP	Temperature (°C): 15°
	Wind: 5
	Precipitation: Light roun Idinzale

Spend 6 minutes at each site listening for nocturnal birds. Record all wildlife you see/hear, but focus on nocturnal birds.

Site	GPS Coordinates	Start Time	Moon Visible (Y/N)	Species Heard	Direction of Call (N, SW)	Approx. distance	Comments
HK2-3	SUL MAP CHASTING	21:55	7	Niche			
BEALLY OF HELDY	See propi	22:10	17	New			
0-11	Note - orough bassed	1355 E	الما - المالة	ala bo woods	no ha	1 much	
4874	24 map wishing	22-25	N	While threated	0	son	opp resent - played my mirrore
Chydro	.1			Service			
Minorial	See map - read ander	22:32	N	Spring people	Zast	100 m	

121 Staying refer point

Amphibian Data Form

Project: rochrane	S.F. Long	Lake 514	_Project No	1247			
UTM:	~						
Observer:	Station Name:	Date:					
NP 13+6	Visit #:	Start time: 2130					
Wind speed:	% Cloud cover: Air Temp:		Water	Water			
5	100	15	Temp:	pH:			
Precipitation Description:							
Remarks:							
		direction 0					

Nothing mounds

CA	CALL LEVEL CODES		Beaufort Wind Scale			
1	Calls can be counted; not simultaneous	0 Calm	0-2	Smoke rises vertically		
2	Some simultaneous calls; distinguishable	1 Light air	3-5	Smoke drifts, but wind vanes do not		
3	Calls not distinguishable individually overlapping	2 Slight breeze	6 – 11	Wind felt on face, leaves rustle		
Enter as: Call code (# of individuals) e.g. 1 (2)		3 Gentle breeze	12 – 19	Leaves & small twigs in constant motion; light flags extended		
		4 Mod breeze	20 – 30	Wind raises dust and loose paper; small branches move		
		5 Fresh breeze	31 – 39	Small trees in leaf begin to sway		
		6 Strong breeze	40 - 50	Large branches in motion; inconvenience felt when walking against wind		

Project: <u> Car lorge</u>	L Sig - Lolg	Lake	_Project No	\ (
UTM: Observer:	Station Name: 2 Visit #:	2	Date: Start time: 2	ine 24 2147
Wind speed:	% Cloud cover:	Air Temp:	Water Temp:	Water pH:
Precipitation Desc	cription: Light	cours		
Remarks:	7			
		direction &O_o		
	Nothing	Nowa		
1 /		1		

CALL LEVEL CODES		Beaufort Wind Scale		
1	Calls can be counted; not simultaneous	0 Calm	0-2	Smoke rises vertically
2	Some simultaneous calls; distinguishable	1 Light air	3-5	Smoke drifts, but wind vanes do not
3	Calls not distinguishable individually overlapping	2 Slight breeze	6 – 11	Wind felt on face, leaves rustle
	er as: Call code (# of individuals) 1 (2)	3 Gentle breeze	12 – 19	Leaves & small twigs in constant motion, light flags extended
ey	(2)	4 Mod breeze	20 – 30	Wind raises dust and loose paper; small branches move
		5 Fresh breeze	31 – 39	Small trees in leaf begin to sway
		6 Strong breeze	40 - 50	Large branches in motion; inconvenience felt when walking against wind

50m 100m

Amphibian Data Form

Project: Cochrone Solar Form - Long Laure Project No. 249

UIM:		med.			
Observer:	Station Name: Visit #:	Station Name: 🍱 Visit #:			
Wind speed:	% Cloud cover:	Air Temp:	Water Temp: 🎨	Water pH;	
Description Description					

Precipitation Description: light rain

Remarks:

direction_/60°

CALL LEVEL CODES		Beaufort Wind Scale		
1	Calls can be counted; not simultaneous	0 Calm	0-2	Smoke rises vertically
2	Some simultaneous calls, distinguishable	1 Light air	3 – 5	Smoke drifts, but wind vanes do not
3	Calls not distinguishable individually overlapping	2 Slight breeze	6 – 11	Wind felt on face, leaves rustle
Enter as: Call code (# of individuals) e.g. 1 (2)		3 Gentle breeze	12 – 19	Leaves & small twigs in constant motion; light flags extended
		4 Mod breeze	20 – 30	Wind raises dust and loose paper; small branches move
		5 Fresh breeze	31 – 39	Small trees in leaf begin to sway
		6 Strong breeze	40 - 50	Large branches in motion, inconvenience felt when walking against wind

225 Labrador Drive, Waterloo, Ontario, N2K 4M8 Tel. (519) 725-2227 Fax: (519) 725-2575 Web: www.nrsi.on.ca

Amphibian Data Form

Project: Coche UTM:	ran Solom Fer	m-Lorg		247
Observer: ਹਵਾਨ ਮਿੱਧ	Station Name: Visit #:	Station Name: 4 Visit #:		
Wind speed:	% Cloud cover:	Air Temp:	Water Temp: 155	Water pH:
Precipitation Des	cription: Ligher Ke	un		
Remarks;				
		direction_ 180	0	
			-	
	NETTON			
	Netter			
				/
/ /				/
1 1			1	1
1 1			\	

CA	LL LEVEL CODES	Beaufort Wind Scale		
1	Calls can be counted; not simultaneous	0 Calm	0-2	Smoke rises vertically
2	Some simultaneous calls; distinguishable	1 Light air	3 – 5	Smoke drifts, but wind vanes do not
3	Calls not distinguishable individually overlapping	2 Slight breeze	6 – 11	Wind felt on face, leaves rustle
Enter as: Call code (# of individuals) e.g. 1 (2)		3 Gentle breeze	12 – 19	Leaves & small twigs in constant motion; light flags extended
		4 Mod breeze	20 – 30	Wind raises dust and loose paper; small branches move
		5 Fresh breeze	31 – 39	Small trees in leaf begin to sway
		6 Strong breeze	40 - 50	Large branches in motion; inconvenience felt when walking against wind

50m

100m