

### DETERMINATION OF SOUND POWER LEVEL OF A TRANSFORMER

**Prepared for:** 

McLean's Mountain Wind GP Inc. 30 St. Clair Avenue West, 12<sup>th</sup> Floor Toronto, ON M4V 3A1

November 20, 2014

### **1 INTRODUCTION**

HGC Engineering was retained by McLean's Mountain Wind GP Inc. to complete acoustic measurements of the project transformer to satisfy Condition G of the Renewable Energy Approval ("REA") (Number 7733-8XUNS5) issued to the site by the Ontario Ministry of the Environment ("MOE").

The audit condition in the REA requires the determination of the sound power level of the transformer for comparison to the specification included in the Environmental Noise Impact Assessment Report, dated August 15, 2012 [1], completed by others. The sound power level of the transformer was measured on July 11, 2014 utilizing methods from C57.12.90, IEEE Standard Test Code for Liquid-Immersed Distribution, Power, and Regulating Transformers [2].

#### 2 SOUND SOURCE UNDER TEST

The transformer, manufactured by ABB, is located within the transformer station at the McLean's Mountain Wind Project. The unit is nominally rated at 70 mVA. Overall dimensions are approximately 5.6 metres wide, 6.1 metres in length and 4.5 metres in height. Photos of the transformer are provided in Figures 1 and 2. The unit does not include forced air cooling.

Acoustically, the transformer was tonal. A tonal sound is defined as one which has a "pronounced audible tonal quality such as a whine, screech, buzz or hum". A/C transformers and inverters typically exhibit a humming character at twice the line frequency (120 Hz) and harmonics thereof, as a result of magnetostrictive forces in the windings and semiconductors. The sound level measurements indicated tones at 120 Hz and harmonics thereof.

The unit was operating normally during the test period.







### **3** ACOUSTIC ENVIRONMENT

The measurements were conducted outdoors at the McLean's Mountain Wind Project near Little Current, Ontario. The sound from the transformer was steady, such that sound pressure measurements could be used to determine the sound emission levels of the transformer assembly, utilizing methods from IEEE Standard, C57.12.90.

Weather conditions during the test period remained relatively constant with a mainly clear sky, air temperature of 20° Celsius, and winds from the south at 3 to 5 m/s.

### 4 INSTRUMENTATION

The sound level measurements were conducted using a Brüel & Kjær PULSE model 3560-B-010 Real Time Frequency Analyzer (S/N 2516092) equipped with a Brüel & Kjær model ZH 0632 Sound Intensity Probe and a Brüel & Kjær matched intensity microphone pair. The instrumentation was calibrated before and after the measurements using a Brüel & Kjær model 4231 sound level calibrator with a dual microphone coupler. Laboratory calibration certificates for the equipment are included as Appendix A.

### **5 MEASUREMENT PROCEDURE**

A sketch of the measurement setup is appended as Figure 3. As per the IEEE C57.12.90 standard, measurements were conducted at 1/3 and 2/3 height of the transformer at 1 meter intervals around all four sides of the unit. Measurements were conducted at 0.3 meters away from the transformer surfaces (mainly the cooling radiators).

### 6 MEASUREMENT RESULTS

Table I provides the average octave band sound pressure levels of the transformer measured at 42 unique locations, as described in the previous section.

| Octave Band Centre<br>Frequency [Hz] | 31.5 | 63 | 125 | 250 | 500 | 1k | 2k | 4k | 8k | Overall<br>[dBA] |
|--------------------------------------|------|----|-----|-----|-----|----|----|----|----|------------------|
| Sound Pressure<br>Level [dB]         | 58   | 59 | 74  | 59  | 63  | 49 | 40 | 33 | 24 | 63               |

Table I: Transformer (70 mVA) Sound Pressure Level [dB]

Appendix B contains the detailed one-third octave band sound pressure level results.

The conversion from sound pressure level to sound power level is based on the area of the imaginary surface enclosing the source, at the specified reference distance from the equipment. In this case, the enclosing surface area for the transformer is  $165 \text{ m}^2$ , including the top. The sound power level of the transformer is presented in Table II below and is also shown graphically in Figure 4.





VIBRATION

# Table II: Measured Transformer Sound Power Level [dB re 10<sup>-12</sup> Watts],Calculated Using Sound Pressure

| Octave Band Centre<br>Frequency [Hz] | 31.5 | 63 | 125 | 250 | 500 | 1k | 2k | 4k | 8k | Overall<br>[dBA] |
|--------------------------------------|------|----|-----|-----|-----|----|----|----|----|------------------|
| Sound Power<br>Level [dB]            | 80   | 81 | 96  | 81  | 85  | 72 | 62 | 55 | 49 | 85               |

Table III shows the sound power level utilized in the Environmental Noise impact Assessment Report.

Table III: Specified Transformer Sound Power Level [dB re 10<sup>-12</sup> Watts]

| Octave Band Centre<br>Frequency [Hz] | 31.5 | 63 | 125 | 250 | 500 | 1k | 2k | 4k | 8k | Overall<br>[dBA] |
|--------------------------------------|------|----|-----|-----|-----|----|----|----|----|------------------|
| Sound Power<br>Level [dB]            | 86   | 92 | 94  | 90  | 89  | 83 | 79 | 73 | 66 | 90               |

The sound pressure level measurements at 0.3 m indicate the overall, A-weighted sound power level of the transformer is 5 dBA less than specified and generally, in all but one octave band, the sound levels are 5 to 15 dB less than specified. However at 125 Hz the measured sound level is 2 dB higher than the specification.

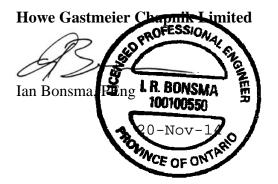
Recent research into methods of measuring sound levels from electrical transformers indicates that measurements completed utilizing sound intensity methods provide more accurate results [3]. Therefore, as a supplement to the above measurements, they were repeated using sound intensity methods and instrumentation. Unlike a simple sound level meter with an omni-directional microphone, sound intensity instrumentation utilizes a highly directional probe and sophisticated analyzer to measure both the magnitude and direction of sound. This approach therefore has excellent immunity to background noise and cross-interference from sources located close together. Methods from ISO 9614-2 "Acoustics - Determination of sound power levels of noise sources using sound intensity - Part 2: Measurement by scanning" [4] were employed in this regard. Table IV provides the sound power level determined using sound intensity methods.

Table IV: Measured Transformer Sound Power Level [dB re 10<sup>-12</sup> Watts],Calculated Using Sound Intensity

| Octave Band Centre<br>Frequency [Hz] | 31.5 | 63 | 125 | 250 | 500 | 1k | 2k | 4k  | 8k  | Overall<br>[dBA] |
|--------------------------------------|------|----|-----|-----|-----|----|----|-----|-----|------------------|
| Sound Power<br>Level [dB]            | 83   | 86 | 91  | 78  | 82  | 70 | 52 | <50 | <50 | 81               |

The sound level measurements completed using sound intensity methods indicate the transformer sound power level meets the specified sound power level in all octave bands, and A-weighted sum.








### 7 CONCLUSIONS

HGC Engineering completed an Acoustic Audit of the electrical transformer located at the McLean's Mountain Wind Project, near Little Current, Ontario. Sound level measurements were completed on July 11, 2014, utilizing methods from C57.12.90, IEEE Standard Test Code for Liquid-Immersed Distribution, Power, and Regulating Transformers and methods from ISO 9614-2.

The sound level measurements and calculations indicate the overall transformer sound level is less than the specified sound level in the Environmental Noise Impact Assessment.



Reviewed by Corey Kinart/PEng

### REFERENCES

- [1] Aercoustics Engineering Limited, "Environmental Noise Impact Assessment, McLean's Mountain Wind Farm", May 3, 2013.
- [2] IEEE Standard C57.12.90, "IEEE Standard Test Code for Liquid-Immersed Distribution, Power and Regulating Transformers." The Institute of Electrical and Electronics Engineers, Inc. New York, 2007.
- [3] Andrew Dobson, "Addressing the Complexities, Limitations and Benefits Involved in Conducting Near-Field Sound Power Measurements of Large Electrical Transformers", Internoise Innsbruck, September 2013.
- [4] ISO Standard 9614-2, "Acoustics Determination of sound power levels of noise sources using sound intensity – Part 2: Measurement by scanning," International Organization for Standardization, 1996.









Figure 1: Transformer



Figure 2: Transformer







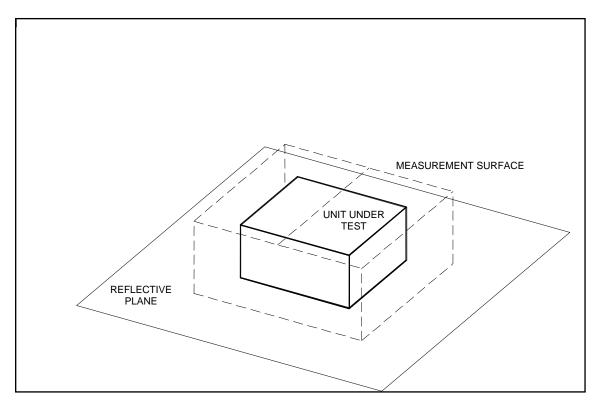
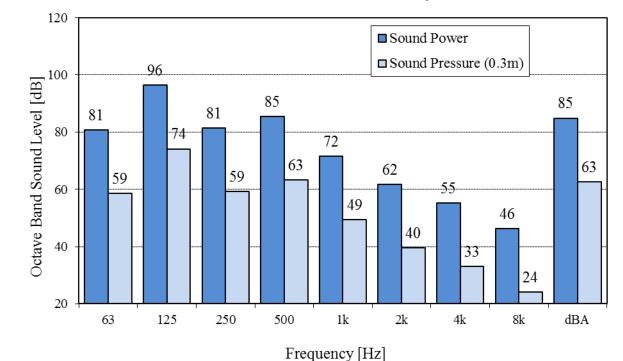




Figure 3: Sketch of Measurement Surface









### Figure 4: Sound Power and Sound Pressure Levels Transformer, Measured July 11, 2014







APPENDIX A Instrument Calibration Certificates







# CERTIFICATE of CALIBRATION

| Make :  | Bruel & Kjaer |
|---------|---------------|
| Model : | 3560-B-010    |

Reference # : 133208

Customer :

HGC Engineering Mississauga, ON

Descr. : Measuring System 5 ch

Serial # : 2476771

P. Order :

Sean Richardson

Asset # : NAN

Cal. status : Received in spec's, no adjustment made.

Navair Technologies certifies that the above listed instrument was calibrated on date noted and was released from this laboratory performing in accordance with the specifications set forth by the manufacturer.

Unless otherwise noted in the calibration report a 4:1 accuracy ratio was maintained for this calibration.

Our calibration system complies with the requirements of ISO-17025 standard, working standards used for calibration are certified by or traceable to the National Research Council of Canada or the National Institute of Standards and Technology.

Calibrated : Jan 20, 2014

By: A (pes 3th

J. Raposo

Cal. Due : Jan 20, 2015

Temperature : 23 °C  $\pm$  2 °C Relative Humidity : 30% to 70%

Standards used : J-129 J-216 J-303

## Navair Technologies

REPAIR AND CALIBRATION TRACEABLE TO NRC AND NIST6375 Dixie Rd. Mississauga, ON, L5T 2E7http://www.navair.comPhone : 905 565 1584Fax: 905 565 8325e-Mail: navair @ navair.com

The copyright of this document is the property of Navair Technologies Any reproduction other then in full requires written approval! APPENDIX B Detailed Measurement Results







| One-Third Octave | 7   |     |     |     |     |     |     | Measu |     |               |         |        | re Level | [dB] |     |     |      |     |     |     |     |
|------------------|-----|-----|-----|-----|-----|-----|-----|-------|-----|---------------|---------|--------|----------|------|-----|-----|------|-----|-----|-----|-----|
| Frequency [Hz]   | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8     | 9   | Microph<br>10 | 10ne Lo | cation | 13       | 14   | 15  | 16  | l 17 | 18  | 19  | 20  | 21  |
| 25               | 64  | 56  | 55  | 57  | 63  | 58  | 57  | 52    | 46  | 45            | 42      | 51     | 47       | 46   | 53  | 56  | 53   | 57  | 62  | 57  | 50  |
| 31.5             | 62  | 57  | 54  | 58  | 63  | 58  | 56  | 49    | 45  | 43            | 40      | 46     | 44       | 44   | 52  | 55  | 52   | 57  | 60  | 53  | 51  |
| 40               | 62  | 58  | 55  | 58  | 63  | 57  | 58  | 56    | 54  | 51            | 41      | 49     | 46       | 46   | 52  | 57  | 59   | 58  | 60  | 54  | 51  |
| 50               | 61  | 58  | 57  | 60  | 62  | 57  | 58  | 59    | 58  | 54            | 45      | 54     | 51       | 51   | 54  | 60  | 63   | 60  | 58  | 56  | 53  |
| 63               | 59  | 53  | 50  | 56  | 59  | 54  | 53  | 47    | 46  | 46            | 57      | 50     | 49       | 49   | 51  | 51  | 50   | 53  | 57  | 51  | 47  |
| 80               | 57  | 51  | 51  | 54  | 56  | 53  | 52  | 45    | 44  | 47            | 40      | 45     | 47       | 47   | 48  | 50  | 46   | 52  | 55  | 51  | 44  |
| 100              | 61  | 59  | 55  | 55  | 60  | 61  | 61  | 58    | 58  | 63            | 57      | 58     | 52       | 53   | 61  | 62  | 62   | 62  | 64  | 64  | 55  |
| 125              | 74  | 73  | 68  | 65  | 73  | 76  | 75  | 72    | 72  | 77            | 72      | 72     | 61       | 64   | 76  | 76  | 77   | 76  | 77  | 78  | 68  |
| 160              | 52  | 50  | 44  | 51  | 51  | 52  | 51  | 50    | 50  | 52            | 45      | 47     | 43       | 43   | 50  | 52  | 50   | 49  | 52  | 52  | 43  |
| 200              | 48  | 46  | 40  | 50  | 47  | 49  | 47  | 49    | 48  | 47            | 41      | 44     | 45       | 42   | 44  | 48  | 41   | 48  | 46  | 43  | 38  |
| 250              | 49  | 54  | 51  | 50  | 46  | 58  | 52  | 54    | 56  | 58            | 55      | 57     | 60       | 56   | 58  | 61  | 53   | 62  | 55  | 48  | 44  |
| 315              | 55  | 54  | 56  | 55  | 53  | 56  | 55  | 52    | 59  | 49            | 52      | 56     | 50       | 48   | 56  | 57  | 61   | 51  | 55  | 55  | 52  |
| 400              | 59  | 58  | 60  | 59  | 57  | 60  | 60  | 57    | 63  | 56            | 57      | 61     | 55       | 53   | 61  | 61  | 65   | 56  | 59  | 59  | 56  |
| 500              | 50  | 52  | 61  | 62  | 56  | 57  | 61  | 60    | 59  | 63            | 58      | 50     | 58       | 59   | 55  | 57  | 62   | 64  | 57  | 49  | 51  |
| 630              | 53  | 53  | 46  | 44  | 45  | 60  | 56  | 51    | 56  | 52            | 51      | 60     | 56       | 55   | 55  | 55  | 61   | 54  | 49  | 55  | 39  |
| 800              | 34  | 37  | 41  | 41  | 39  | 40  | 42  | 42    | 50  | 51            | 42      | 39     | 38       | 39   | 35  | 43  | 46   | 50  | 42  | 41  | 33  |
| 1000             | 36  | 35  | 36  | 31  | 34  | 41  | 40  | 46    | 57  | 54            | 46      | 38     | 40       | 47   | 36  | 39  | 41   | 44  | 43  | 37  | 33  |
| 1250             | 29  | 29  | 32  | 30  | 34  | 34  | 37  | 42    | 52  | 51            | 40      | 32     | 33       | 38   | 30  | 39  | 34   | 37  | 41  | 32  | 31  |
| 1600             | 27  | 29  | 33  | 28  | 33  | 35  | 35  | 39    | 44  | 46            | 36      | 31     | 32       | 33   | 30  | 36  | 35   | 37  | 42  | 35  | 29  |
| 2000             | 30  | 31  | 32  | 33  | 34  | 32  | 32  | 35    | 40  | 41            | 33      | 32     | 32       | 30   | 28  | 34  | 34   | 36  | 37  | 32  | 30  |
| 2500             | 25  | 26  | 26  | 25  | 27  | 27  | 29  | 33    | 35  | 41            | 29      | 27     | 28       | 28   | 27  | 30  | 29   | 30  | 35  | 28  | 27  |
| 3150             | 25  | 26  | 25  | 26  | 27  | 27  | 29  | 31    | 34  | 42            | 32      | 28     | 28       | 28   | 27  | 29  | 27   | 29  | 35  | 27  | 26  |
| 4000             | 25  | 29  | 28  | 30  | 29  | 28  | 27  | 27    | 30  | 37            | 31      | 25     | 26       | 25   | 26  | 28  | 27   | 29  | 32  | 29  | 28  |
| 5000             | 24  | 26  | 24  | 23  | 25  | 23  | 25  | 26    | 28  | 34            | 37      | 23     | 23       | 23   | 23  | 26  | 23   | 25  | 27  | 25  | 24  |
| 6300             | 23  | 25  | 23  | 21  | 24  | 22  | 22  | 24    | 26  | 29            | 30      | 21     | 21       | 21   | 21  | 25  | 21   | 22  | 24  | 22  | 22  |
| 8000             | 26  | 27  | 24  | 24  | 26  | 24  | 21  | 21    | 26  | 26            | 24      | 22     | 20       | 20   | 19  | 24  | 23   | 19  | 22  | 23  | 23  |
| 10000            | 23  | 25  | 25  | 21  | 24  | 22  | 19  | 18    | 23  | 25            | 19      | 18     | 18       | 18   | 17  | 23  | 20   | 18  | 18  | 20  | 21  |
| Height           | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5   | 1.5 | 1.5           | 1.5     | 1.5    | 1.5      | 1.5  | 1.5 | 1.5 | 1.5  | 1.5 | 1.5 | 1.5 | 1.5 |
| A-Weighted       | 61  | 60  | 61  | 61  | 60  | 64  | 63  | 61    | 65  | 65            | 61      | 62     | 59       | 59   | 63  | 64  | 66   | 64  | 63  | 63  | 56  |
| C-Weighted       | 75  | 74  | 70  | 69  | 73  | 76  | 75  | 73    | 73  | 78            | 72      | 73     | 66       | 67   | 76  | 77  | 77   | 76  | 78  | 78  | 69  |



| One-Third Octave |          |          |          |                |          |          |          | Measu    | red Tra        |               |                |          | re Level | [dB]     |          |          |          |    |          |          |          |
|------------------|----------|----------|----------|----------------|----------|----------|----------|----------|----------------|---------------|----------------|----------|----------|----------|----------|----------|----------|----|----------|----------|----------|
| Frequency [Hz]   | 1        | 2        | 3        | 4              | 5        | 6        | 7        | 8        | 9              | Micropl<br>10 | none Loo<br>11 | cation   | 13       | 14       | 15       | 16       | 17       | 18 | 19       | 20       | 21       |
| 25               | 42       | _        | -        | <b>4</b><br>50 | -        | ÷        | -        | -        | <b>9</b><br>47 |               | 42             | 45       | 44       |          | -        | 44       |          | 53 | -        |          | 60       |
| 25<br>31.5       | 43<br>42 | 54<br>49 | 52<br>49 | 50<br>45       | 66<br>66 | 60<br>57 | 51<br>49 | 47<br>45 | 47             | 54<br>51      | 42             | 45<br>41 | 44       | 41<br>40 | 42<br>39 | 44       | 48<br>48 | 53 | 63<br>59 | 57<br>55 | 60<br>60 |
| 40               | 42       | 49       | 49       | 43             | 68       | 57       | 49<br>49 | 43       | 40             | 52            | 40             | 41       | 42       | 39       | 39       | 43       | 40       | 49 | 60       | 55       | 59       |
| 40<br>50         | 40       | 48       | 47       | 42             | 66       | 55       | 49<br>51 | 44       | 43             | 52            | 41             | 42       | 41       | 41       | 41       | 42       | 40       | 49 | 57       | 53       | 59<br>57 |
| 63               | 43       | 46       | 40       | 50             | 65       | 56       | 53       | 53       | 61             | 59            | 57             | 43       | 40       | 44       | 51       | 43<br>51 | 40       | 43 | 55       | 51       | 55       |
| 80               | 41       | 45       | 45       | 44             | 62       | 51       | 45       | 40       | 44             | 48            | 40             | 41       | 39       | 40       | 38       | 42       | 40       | 44 | 54       | 50       | 52       |
| 100              | 61       | 59       |          | 57             | 63       | 55       | 59       | 61       | 59             | 60            | 57             | 55       | 56       | 53       | 54       | 59       | 63       | 56 | 65       | 65       | 58       |
| 125              | 75       | 74       | 68       | 71             | 70       | 67       | 73       | 75       | 74             | 74            | 72             | 70       | 71       | 68       | 69       | 74       | 77       | 70 | 80       | 80       | 72       |
| 160              | 48       | 47       | 43       | 45             | 56       | 48       | 46       | 48       | 47             | 48            | 45             | 43       | 44       | 42       | 42       | 47       | 50       | 44 | 55       | 53       | 47       |
| 200              | 38       | 39       | 42       | 35             | 55       | 47       | 42       | 44       | 47             | 40            | 41             | 43       | 39       | 42       | 41       | 46       | 43       | 40 | 50       | 45       | 42       |
| 250              | 48       | 35       | 55       | 42             | 59       | 55       | 54       | 57       | 60             | 47            | 55             | 56       | 50       | 57       | 55       | 60       | 56       | 49 | 58       | 55       | 47       |
| 315              | 60       | 52       | 60       | 53             | 56       | 54       | 43       | 56       | 53             | 54            | 52             | 50       | 58       | 57       | 57       | 61       | 63       | 45 | 59       | 55       | 52       |
| 400              | 65       | 56       | 64       | 58             | 58       | 58       | 49       | 61       | 57             | 59            | 57             | 55       | 62       | 62       | 62       | 65       | 67       | 50 | 63       | 60       | 57       |
| 500              | 52       | 52       | 44       | 56             | 48       | 58       | 58       | 55       | 54             | 53            | 58             | 53       | 53       | 54       | 54       | 58       | 58       | 62 | 63       | 58       | 53       |
| 630              | 50       | 45       | 40       | 47             | 52       | 52       | 56       | 59       | 58             | 52            | 51             | 52       | 54       | 48       | 52       | 51       | 61       | 58 | 58       | 50       | 39       |
| 800              | 36       | 37       | 34       | 37             | 42       | 42       | 41       | 46       | 48             | 51            | 42             | 41       | 40       | 33       | 37       | 42       | 40       | 49 | 47       | 43       | 35       |
| 1000             | 33       | 37       | 35       | 34             | 41       | 43       | 44       | 48       | 52             | 57            | 46             | 44       | 47       | 35       | 41       | 48       | 44       | 49 | 42       | 37       | 36       |
| 1250             | 29       | 32       | 31       | 31             | 35       | 37       | 38       | 41       | 44             | 49            | 40             | 38       | 39       | 31       | 34       | 39       | 36       | 39 | 36       | 33       | 30       |
| 1600             | 28       | 30       | 32       | 27             | 32       | 36       | 37       | 38       | 42             | 46            | 36             | 35       | 35       | 28       | 29       | 34       | 36       | 35 | 36       | 33       | 29       |
| 2000             | 27       | 31       | 32       | 29             | 30       | 34       | 35       | 37       | 37             | 41            | 33             | 31       | 31       | 27       | 27       | 33       | 35       | 34 | 34       | 32       | 29       |
| 2500             | 25       | 25       | 26       | 24             | 27       | 27       | 29       | 32       | 33             | 38            | 29             | 28       | 27       | 23       | 25       | 28       | 28       | 29 | 29       | 27       | 26       |
| 3150             | 25       | 24       | 26       | 24             | 24       | 25       | 27       | 29       | 31             | 38            | 29             | 29       | 27       | 23       | 25       | 28       | 28       | 28 | 29       | 26       | 26       |
| 4000             | 23       | 25       | 25       | 23             | 24       | 25       | 30       | 28       | 30             | 36            | 26             | 26       | 26       | 23       | 24       | 27       | 27       | 29 | 29       | 28       | 26       |
| 5000             | 23       | 24       | 25       | 25             | 24       | 22       | 22       | 22       | 25             | 31            | 23             | 24       | 22       | 21       | 22       | 24       | 24       | 25 | 25       | 26       | 25       |
| 6300             | 21       | 23       | 22       | 20             | 21       | 19       | 19       | 20       | 22             | 25            | 20             | 21       | 20       | 20       | 20       | 22       | 22       | 23 | 23       | 24       | 23       |
| 8000             | 20       | 23       | 22       | 21             | 21       | 19       | 19       | 19       | 21             | 24            | 19             | 20       | 19       | 18       | 18       | 19       | 20       | 20 | 20       | 21       | 21       |
| 10000            | 18       | 21       | 22       | 18             | 19       | 16       | 17       | 18       | 18             | 25            | 17             | 18       | 17       | 17       | 17       | 17       | 17       | 18 | 17       | 18       | 19       |
| Height           | 3        | 3        | 3        | 3              | 3        | 3        | 3        | 3        | 3              | 3             | 3              | 3        | 3        | 3        | 3        | 3        | 3        | 3  | 3        | 3        | 3        |
| A-Weighted       | 63       | 60       | 61       | 59             | 60       | 60       | 61       | 63       | 62             | 63            | 60             | 58       | 61       | 60       | 60       | 64       | 67       | 62 | 67       | 65       | 58       |
| C-Weighted       | 76       | 74       | 70       | 72             | 73       | 69       | 73       | 76       | 75             | 75            | 72             | 70       | 72       | 70       | 70       | 75       | 78       | 71 | 80       | 80       | 72       |

